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Abstract

The thesis surveys copula as a tool for modeling stochastic dependence in mul-
tivariate probability distribution, namely it provides basic analytical and statistical
properties, classification to three popular groups, stochastic interpretation and con-
struction methods linked mainly to the author’s publication history. The second
part is dedicated to practical use including methods for statistical inference, open
source software tools and some most significant applications of copula models pub-
lished by the author. Copies of author’s scientific papers that are most frequently
cited by the thesis are included as appendix.

Abstrakt

Práca skúma kopulu ako nástroj modelovania stochastickej závislosti vo viac-
rozmernom rozdelení pravdepodobnosti, konkrétne popisuje jej základné analytické
a štatistické vlastnosti, tri najznámejšie triedy, a prevažne tie metódy konštrukcie,
ktoré sa dotýkajú autorovej výskumnej činnosti. Druhá časť je venovaná praktick-
ému používaniu a využitiu kopule, najmä popisu metód pre odhad a testovanie
modelov závislosti, predstaveniu voľne dostupných softvérových nástrojov a zhrnu-
tiu niektorých najvýznamnejších aplikácií publikovaných autorom. Prílohu tvoria v
práci najčastejšie citované autorské zdroje.

v





Contents

Abstract v

Preface ix

1 Introduction to copulas 1
1.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Elliptical copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Frailty models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Resource sharing models . . . . . . . . . . . . . . . . . . . . . 5

1.4 Extreme-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Construction methods 9
2.1 Distortions of copula . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Mixture of max-id . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Archimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Other constructions based on Archimedean generators . . . . . . . . . 11
2.2.1 Univariate conditioning stable . . . . . . . . . . . . . . . . . . 11
2.2.2 Distorted UCS . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Generators of Archimedean copulas . . . . . . . . . . . . . . . . . . . 13
2.3.1 From a given generator . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 From a given function . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Dependence functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Linked to power of generator . . . . . . . . . . . . . . . . . . . 16
2.4.2 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Applications 19
3.1 Model building and inference . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Well established packages for R . . . . . . . . . . . . . . . . . 21
3.2.2 R package acopula . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Conclusion 31

Bibliography 33

Index 37

vii



viii CONTENTS

Appendix 39
A.1 On some new constructions of Archimedean . . . (2010) . . . . . . . . . 41
A.2 Non-exchangeable random variables . . . (2011) . . . . . . . . . . . . . 51
A.3 Additive generators of copulas (2015) . . . . . . . . . . . . . . . . . . 65
A.4 Generators of copulas and aggregation (2015) . . . . . . . . . . . . . . 75
A.5 Convergence of linear approximation . . . (2017) . . . . . . . . . . . . . 83



Preface

Copula is a mathematical concept that allows modeling dependence separately from
margins in a multivariate probability distribution. During the last ten years it was
the main topic of my post-doctoral research at the Department of Mathematics
and Constructive Geometry. However, this habilitation thesis does not focus solely
on my achievements, it rather tries (a) to give a self-contained (both analytical and
statistical) overview of the relevant copula theory with noticeable bias towards topics
of my scientific interest, and (b) to provide references to our publications including
hard copy of the most referred ones.

The first chapter summarizes copula properties and their most prominent classes
(elliptical, Archimedean and extreme-value copulas) with statistical interpretation.
The second one provides a survey on construction methods, especially those con-
nected with Archimedean and extreme-value copulas, such as distortion (leading to,
e.g., Archimax copulas) and methods used to construct generators and dependence
functions. Our main contribution with co-authors include constructions 1–4, 6–11
and 13. The last chapter review practical use of copulas, i.e., statistical inference
such as estimation based on observed data and testing goodness of their fit, then
(mainly open source) software tools for handling copulas with focus on my own pack-
age developed in R, and finally the chapter sums up those our publications where
copulas (of various constructions) were used for modeling stochastic dependence
between variables from fields like hydrology and economics.

In Bratislava, on 28th November 2017 author
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Chapter 1

Introduction to copulas

In recent years copulas turned out to be a promising tool in multivariate modeling,
mostly with applications in actuarial sciences and hydrology. In this section we
provide fundamental facts about these functions and describe the most popular
parametric classes.

1.1 Definition and properties

From statistical point of view, copula is a function1 C : [0, 1]d → [0, 1], d ≥ 2, which
allows modeling dependence structure in stochastic vector X = (X1, ..., Xd). The
main advantage is that the copula approach can split the problem of constructing
multivariate distributions into a part containing the marginal distribution functions
FX1 , . . . , FXd : R → [0, 1] and a part containing the dependence structure. These
two parts can be studied and estimated separately and then rejoined to form a
multivariate distribution function FX : Rd → [0, 1], formally

FX(x1, . . . , xd) = C (FX1(x1), . . . , FXd(xd)) , with x1, . . . , xd ∈ R

as introduced by [Sklar, 1959]. Thus copula can be seen as joint distribution function
restricted to [0, 1]d with uniform margins.

From axiomatic point of view, (bivariate) copula is a function C : [0, 1]2 → [0, 1]
which satisfies

• the boundary conditions C(u, 0) = C(0, v) = 0 (C is grounded), C(u, 1) = u,
C(1, v) = v (1 is neutral element of C),

• 2-increasing property C(u, v) + C(u′, v′) − C(u, v′) − C(u′, v) ≥ 0 for all
u, v, u′, v′ ∈ [0, 1], u ≤ u′, v ≤ v′.

Special cases include copulas

M(u, v) = min(u, v),

Π(u, v) = uv,

W (u, v) = max(u+ v − 1, 0),

where (the strongest copula) M and (the weakest copula) W satisfy Fréchet-Höffding
bounds inequality

W (u, v) ≤ C(u, v) ≤M(u, v), for any copula C,

1As for notation, for instance [a, b) means a left closed and right open interval with endpoints
a and b.

1



2 CHAPTER 1. INTRODUCTION TO COPULAS

and represent perfect positive and negative dependence, respectively. The product
copula Π stands for complete independence.

Copula is symmetric if C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]2 and is asymmetric
otherwise.

Generally, in d-variate case,

• the boundary conditions means C(u1, . . . , ud) = 0 whenever 0 ∈ {u1, . . . , ud}
and C(u1, . . . , ud) = ui whenever uj = 1 for each j 6= i, and

• C is d-increasing, i.e., for any u,v ∈ [0, 1]d, u ≤ v (i.e., u1 ≤ v1, . . . , ud ≤ vd),
the C-volume VC([u,v]) of rectangle [u,v] is nonnegative, where

VC([u,v]) =
∑

ε∈{−1,1}d

(
C(zε)

d∏

i=1

εi

)
≥ 0,

with zε = (zε11 , . . . , z
εd
d ), z1

i = vi, z
−1
i = ui.

Though there is straightforward extension of functions M,W,Π to d dimensions,

M(u1, . . . , ud) = min(u1, . . . , ud),

Π(u1, . . . , ud) =
d∏

j=1

uj,

W (u1, . . . , ud) = max(
d∑

j=1

uj − d+ 1, 0),

the lower bound W is not a copula for d ≥ 3 (M and Π are copulas for any dimension
d ≥ 2).

Besides the above elementary copulas there exist numerous parametric families,
possibly grouped in classes. Following [Durante & Sempi, 2015], a family of copulas
is any subset of Cd (all d-dimensional copulas) that can be indexed by a suitable
set Θ, denoted (Cθ)θ∈Θ. Such a Θ may be a subset of Rp (p ≥ 1, then θ is usually
referred to as a parameter) or a set of functions with suitable properties. Ideally,
a family should be identifiable (a copula in the family cannot be parametrised in
two different ways) and monotonically ordered (the order between parameters is
reflected by the same, or opposite, ≤ order between copulas), moreover for practical
purposes also interpretable (probabilistic interpretation suggesting natural situation
where the family may be considered), flexible with wide range of dependence, and
should also be easy to handle (expressed in a closed form or at least analytically
tractable).

The most frequently used classes of parametric families are eliptical, Archimedean
and Extreme-value copulas which we will briefly characterize in the following sub-
sections.

1.2 Elliptical copulas

These are copulas of the elliptically contoured distributions such as normal distri-
bution with Gaussian (or normal) copula

CΦ(x1, ..., xd) = Φ
[
Φ−1

1 (x1), ...,Φ−1
d (xd)

]
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and Student t-distribution with t-copula

Ct(x1, ..., xd) = t
[
t−1
1 (x1), ..., t−1

d (xd)
]
,

where Φ and t are respective joint distribution functions of multivariate normal and
Student t- distributions, similarly Φ−1

i and t−1
i , i = 1, ..., d are univariate quantile

functions related to Xi. Both parametric families flexibly describe dependence in
multidimensional random vector, however only their density has an explicit form.

To see analogy with Archimedean copulas, mainly treated in this thesis, let
us recall statistical origin of elliptical copulas [Mai & Scherer, 2012]. The family of
elliptical distributions is a generalization of the class of spherical distributions - each
elliptical distribution is obtained as a linear transformation of spherical distributions.
Formally, the random vector X = (X1, . . . , Xd)

′ has an elliptical distribution if

X
d
= µ+ A′Y

d
= µ+ A′RS

where µ ∈ Rd is a linear shift, A ∈ Rk×d is a linear transformation of the k-
dimensional spherically distributed random variable Y = RS, further R is a non-
negative random variable (interpreted as radius), S is a random vector (interpreted
as direction) that is independent of R and uniformly distributed on the unit sphere

SL2,k =
{
x ∈ Rk|∑k

i=1 x
2
i = 1

}
. An elliptical distribution has elliptically contoured

density level surfaces, which explains the name. Besides the transformation via A,
the random variable R introduces additional dependence to the components and
influences in particular the (joint) tail behavior.

Equivalently, spherical distribution can be characterized by means of certain
one-dimensional function ϕ (characteristic generator), such that the characteris-
tic function φY of (spherically distributed) Y admits the representation φY (t) =
E
[
eit
′Y
]

= ϕ(‖t‖2), t ∈ Rk.
Then, there can be seen the two well-known parametric families as special cases,

namely

• X ∼ Nd(µ,Σ) (multivariate normal distribution) if Y
d
= Z ∼ Nk(0, I) with

Σ = A′A ∈ Rd×d being the (positive-semidefinite) covariance matrix. Note

that R2 d
= Z2

1 + . . .+ Z2
k ∼ χ2(k) and ϕ(x) = exp(−x/2).

• X ∼ td(µ,Σ, ν) (multivariate Student’s t-distribution) if Y
d
=
√
WZ with

1/W ∼ Γ(µ/2, µ/2) (Gamma distribution) and A = Σ1/2, where Σ1/2Σ1/2 = Σ
is positive definite, W and Z are independent. Note that R2/d ∼ F(d, ν) (F-
distribution) and ϕ(x) =

∫∞
0
e−wx/2dFW (w), where FZ denotes distribution

function of W .

Finally, elliptical copulas are obtained by standardizing the univariate marginals
of elliptical distributions.

1.3 Archimedean copulas

Archimedean copulas are popular for their easy construction and nice analytical
properties, they are characterized by the associativity2 and the diagonal inequality
C(u, . . . , u) < u, ∀u ∈ [0, 1], represented by the formula

C(u1, . . . , ud) = f (−1)
(
f(u1) + . . .+ f(ud)

)
(1.1)

2 i.e., e.g., C(C(u1, u2), u3) = C(u1, C(u2, u3)) for all u1, u2, u3 ∈ [0, 1]
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where the so-called additive generator f : [0, 1]→ [0,∞] is a continuous strictly de-
creasing mapping such that f(1) = 0, and its pseudo-inverse f (−1) : [0,∞] → [0, 1]
given by f (−1)(u) = f−1

(
min(f(0), u)

)
is d-monotone3 [McNeil & Nešlehová, 2009].

We denote by Fd the class of all additive generators that generate d-dimensional
copulas (in fact k-dimensional with any k ≤ d) and f ∈ F∞ will be called uni-
versal generators, where F∞ =

⋂∞
d=2Fd. Obviously F2 ⊃ F3 ⊃ . . . ⊃ F∞. Note

that for any multiplicative constant c > 0, functions f and c f generate the same
Archimedean copula C.

When convenient, we will denote the inverse function f (−1) by g and its pseudo-
inverse4 will be defined as g(−1)(u) = inf{t ∈ [0,∞)|g(t) ≥ u}. It is not difficult to
check that g = f (−1) and f = g(−1), i.e., the information contained in the additive
generator f of an Archimedean copula C is the same as the information contained in
its pseudo-inverse g, and that C(u, v) = f (−1)(f(u) + f(v)) = g(g(−1)(u) + g(−1)(v)).
In fact, in the literature both forms are used, the first one (based on f) being
preferred in probabilistic areas, while the second one (based on g) is more frequently
used in the statistical literature. Analogously, we denote by Gd the class of all
additive generators inverses g that generate d-dimensional copulas and G∞ will refer
to inverses of universal generators.

Some well known examples include

- f(u) = 1− u, f ∈ F2 \ F3, that generates W ,

- f(u) = − log u, f ∈ F∞, the generator of Π,

- f(u) = (− log u)p with parameter p ≥ 1, f ∈ F∞, giving the so-called Gumbel
family

- f(u) = 1
p
(u−p − 1) with p > 0, f ∈ F∞ (the strict case), and with −1

d−1
≤ p <

0, f ∈ Fd, representing the so-called Clayton family, including the weakest
Archimedean copula (for p = −1

d−1
, moreover W for d = 2) and having Π as

limiting case (p→ 0),

- f(u) = − log
(
e−pu−1
e−p−1

)
with p 6= 0, f ∈ F∞, yielding the so-called Frank family

that goes to Π as p → 0 and to M as p → ∞ (the same with Gumbel and
Clayton family).

The name ”Archimedean” comes from the Archimedean property that these
copulas share with 1-Lipschitz triangular norms, for which [Ling, 1965] showed they
can be represented as in (1.1). See convenient explanation, e.g., in [Mai & Scherer,
2014].

Although Archimedean copulas arose as purely analytical construction, they pos-
sess also interesting statistical interpretations, particularly in the context of multi-
plicative frailty and resource sharing models, briefly depicted in the following sub-
sections. See also [Genest et al., 2011].

3 A real function g is called d-monotone, d ≥ 2, if it is differentiable up to the order d− 2 and
the derivatives satisfy (−1)kg(k)(u) ≥ 0, k = 0, 1, . . . , d− 2, for any u in its domain and further if
(−1)d−2g(d−2) is nonincreasing and convex.
4Pseudo-inverses are deeply discussed in [Klement et al., 1999]
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1.3.1 Frailty models

Let T1, ..., Td be lifetimes with survival5 functions F̄Ti and Z be positive random
variable called common frailty with distribution function FZ , such that P(Ti >
t|Z = z) = Ḡi(t)

z (i.e., Z lowers Ti), z > 0, with some associated survival function
Ḡi. Hence

F̄Ti(t) = P(Ti > t) =

∫ ∞

0

Ḡi(t)
zdFZ(z) = LZ

(
− ln Ḡi(t)

)

P(T1 > t1, ...Td > td|Z = z) =
d∏

i=1

Ḡi(ti)
z, (condit. independent)

F̄T (t1, ..., td) = P(T1 > t1, ...Td > td) = LZ
(
−

d∑

i=1

ln Ḡi(t)

)

= g

{
d∑

i=1

f ◦ F̄Ti(ti)
}

where LZ is the Laplace-Stieltjes transform6 of Z. Thus survival copula associated
with T = (T1, ..., Td) is obviously an Archimedean copula with generator f ∈ F∞,
g = f (−1) = LZ . Note that the random vector T admits only positive dependence
among its components with this models.

In the special case when Gi(t) = e−t (exponential distribution with parameter
λ = 1), ∀i ∈ {1, . . . , d}, is a survival function of a random variable Yi, then lifetimes

can be expressed as Ti
d
= Yi/Z with F̄Ti = g and F̄T (t1, . . . , td) = E[e−(t1+...+td)Z ] =

g(t1 + . . .+ td).
In dual model, P(Ti ≤ t|Z = z) = Gi(t)

z (i.e., Z elevates Ti), z > 0, with some
associated distributon function Gi, the random variable Z is called resilience. For
more details and references we recommend [Joe (2015)].

1.3.2 Resource sharing models

Let R > 0 be a common resource (positive random variable with distribution func-
tion FR) to be distributed among d ≥ 2 agents, and S1, ..., Sd be their shares uni-
formly distributed on the standard simplex

{
(s1, ...sd) ∈ [0, 1]d|s1 + . . .+ sd = 1

}
.

Then the amounts of the resource,

(X1, ..., Xd) = R× (S1, ..., Sd), (1.2)

follows a simplex distribution with radial part R and survival functions of X =
(X1, ..., Xd) are

F̄X(x1, ..., xd) =

∫ ∞

0

Pr
[
S1 >

x1

r
, ..., Sd >

xd
r

]
dFR(r) =

=

∫ ∞

0

(
1− x1 + ...+ xd

r

)d−1

dFR(r) =

= g(x1 + ...+ xd)

F̄Xi(xi) = g(xi) i = 1, . . . , d

5 Survival function is dual to distribution function, F̄X(x) = 1− FX(x) = P(X > x), similarly
joint survival function F̄ (x1, . . . , xd) = Ĉ(F̄X1

(x1), . . . , F̄Xd
(xd)) with survival copula Ĉ.

6 LZ(s) = E[exp(−sZ)] =
∫∞
0

exp(−sz)dFZ(z)
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Thus, as shown by [McNeil & Nešlehová, 2009], a copula C is Archimedean
copula iff it is survival copula of a vector X with representation (1.2) whose radial
part fulfills FR(0) = 0.

The transformation of FR to g is called the Williamson d-transform denoted Wd

and defined

g(x) =Wd(FR)(x) =

∫ ∞

x

(
1− x

r

)d−1

dFR(r) = E
[
1− x

R

]d−1

+
,

FR(r) =W−1
d (g)(r) = 1−

d−2∑

i=0

(−1)i

i!
rig(i)(r)− (−1)d−1

(d− 1)!
rd−1g

(d−1)
+ (r).

If g = Wd(FR) = LZ then R
d
= Ed/Z, where Ed ∼ Erlang(d) = Γ(d, 1) and

the frailty variable Z are independent. Scale of R has no impact on the generated
copula.

The above statistical interpretations of Archimedean copulas show their similar-
ity with spherical distributions. For further interesting details about this analogy,
see [Joe, 2015, 152].

1.4 Extreme-value

EV copulas model dependence structure between componentwise maxima Xmax
n =

(Xmax
n,1 , . . . , X

max
n,d ), Xmax

n,j =
∨n
i=1Xi,j, of d-variate stationary stochastic process {Xi1, . . . , Xid)}ni=1

with common distribution function F , margins F1, . . . , Fd and copula CF .

Let Cn be a copula ofXmax
n , then it holds that Cn(u1, . . . , ud) = CF

(
u

1/n
1 , . . . , u

1/n
d

)n
,

and an extreme-value copula C is just its limit case

C(u) = lim
n→∞

Cn(u)

(if it exists). It is said, that CF lie in the domain of attraction of C, which in turn
is called max-stable (lying in its own domain of attraction).

The class of Extreme-value copulas coincide with the set of copulas of extreme-
value distributions, therefore they may be represented as

C(u1, . . . , ud) = exp(−`(− log u1, . . . ,− log ud))

where the tail dependence function ` : [0,∞)d → [0,∞) is defined by

`(x1, . . . , xd) =

∫

∆d−1

d∨

j=1

(wjxj)dH(w1, . . . , wd),

the unit simplex in Rd is given as usually ∆d−1 = {(w1, . . . , wd) ∈ [0,∞)d|∑j wj =
1} and the spectral measure H is due to uniformity of copula margins constrained
to
∫

∆d−1
wjdH(w1, . . . , wd) = 1. The tail dependence function ` si convex, positively

homogeneous of order one7 and satisfies max(x1, . . . , xd) ≤ `(x1, . . . , xd) ≤ x1 + . . .+
xd for all (x1, . . . , xd) ∈ [0,∞]d.

By homogeneity, it is characterized by the Pickands dependence function A : ∆d−1 →
[1/d, 1] (restriction to unit simplex)

`(x1, . . . , xd) = (x1 + . . .+ xd)A(w1, . . . , wd), where wj =
xj

x1 + . . .+ xd
7 i.e. `(cx1, . . . , cxd) = c`(x1, . . . , xd) for c > 0
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(with convention 0
0

= 1
d
), then extreme-value copula C can be expressed in terms of

A via

C(u1, . . . , ud) = exp

[(
d∑

i=1

log ui

)
A

(
log u1∑d
i=1 log ui

, . . . ,
log ud∑d
i=1 log ui

)]
.

In bivariate case, A is most often defined as a function [0, 1]→ [1/2, 1] of one argu-
ment, A(w) = `(w, 1−w), characterized by the convexity and boundary conditions
max(w, 1− w) ≤ A(w) ≤ 1.

Some well known cases include

- `(x) =
∑d

i=1 xi which gives Π (the smallest EV copula),

- ` = max, the tail dependence function of M ,

- `(x) =
(∑d

i=1 x
θ
i

) 1
θ

with parameter θ ≥ 1 giving the so-called Gumbel copulas

family8,

- `(x) =
∑
∅6=I⊂{1,...,d}(−1)card(I)+1

(∑
j∈I x

−θ
j

)
that for θ > 0 constitutes Galam-

bos family of d-dimensional EV copulas, however the more familiar formula
belongs to Pickands dependence function in bivariate case, A(t) = 1− (t−θ +
(1− t)−θ)−1/θ.

- A(t) = tΦ
(

1
θ

+ θ
2

log t
1−t
)

+ (1− t)Φ
(

1
θ
− θ

2
log t

1−t
)
, θ > 0, where Φ is CDF of

standard normal distribution, and it is known as Hüsler-Reiss family.

All the three above parametric families are parametrized to range from Π to M
(explicitly or as limiting case) as θ increases.

For more details about Extreme-value copulas we recommend [Gudendorf &
Segers, 2010].

8 Gumbel - also known as Gumbel-Hougaard - copulas are the only family belonging to
Archimedean and Extreme-value class at the same time.





Chapter 2

Construction methods

There is a great variety of constructions developed in the history of copulas and it
can be quite difficult to summarize it exhaustively, one can consult, e.g., a rather
encyclopedic monograph of [Joe, 2015] reviewing the recent state-of-the-art of de-
pendence modeling with copulas classifying parametric families with respect to their
construction origins. Here we recall a brief summary given by [Durante & Sempi,
2010], who distinguish three essential kinds of construction, yet, “at an abstract
level, all the methods start with some known copulas and/or some auxiliary func-
tions”. The first group (a) is made of copulas with given lower dimensional margins
with the most prominent representatives being pair-copula construction (Vine cop-
ulas) and nested construction (hierarchical Archimedean copulas). Then there are
(b) copula-to-copula transformations like ordinal sums, distortions, pointwise com-
position and shuffles of copulas, that transform d-dimensional copulas into other
d-dimensional copulas having possibly additional features. Finally, (c) geometric
constructions start with some information about the copula structure, for example
support, diagonals, horizontal and vertical sections. Details and references can be
find in [Durante & Sempi, 2010].

In the context of our presented work, specifically the distortions are interesting
and we dedicate it the next subsection with emphasize on Archimax copulas which
at the same time form a superclass combining Archimedean and Extreme-value
copulas.

2.1 Distortions of copula

Consider a copula C and an increasing bijection h : [0, 1]→ [0, 1], then distortion of
C is defined as

Ch(u) = h
[
C(h−1(u1), . . . , h−1(ud))

]
, (2.1)

see [Morillas, 2005] for discussion and examples.

2.1.1 Mixture of max-id

Now, following [Joe2015, p.98], consider a max-infinitely divisible (max-id)1 copula
K and a function g ∈ G∞ which is the Laplace transform of some resilience variable

1 A multivariate cdf F is max-infinitely divisible if F z is a cdf for all z > 0. Analogously, F̄
is min-infinitely divisible if F̄ z is a multivariate survival function for all z > 0. Max-id condition
is satisfied by all EV copulas and both max-id and min-id by the bivariate Archimedean copulas
based on F∞ generators.

9
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Z (see section 1.3.1). Then

Ch,K(u) = g
(
− logK(e−g

−1(u1), . . . , e−g
−1(ud))

)
(2.2)

is the copula of multivariate distribution Fg,K =
∫∞

0
KzdFZ(z) = g(−logK), a

mixture of max-id distributions. By relation h = g ◦ (− log) it is obviously the
distortion kind of construction and it generalizes Archimedean copula families with
more flexible positive dependence property than is the exchangeability. For bivariate
copula families, there are lots of choices for g and K, the well known are 2-parameter
BB1 to BB7 families.

In particular, when

• K is Archimedean copula with generator ϕ then also (2.2) yields an Archimedean

copula with generator ϕg(t) = ϕ
(
eg
−1(t)

)
,

• K is a bivariate EV copula with dependence function `, then

Cg,K(u1, u2) = g
[
`(g−1(u1), g−1(u2))

]
(2.3)

matches the class of so-called (bivariate) Archimax copulas introduced in
[Capéraà et al., 2000].

As Archimax copulas make an important part of our scientific research, more
about them needs to be told which is satisfied in the next subsection.

2.1.2 Archimax

In terms of Pickands dependence function A and generator f the formula (2.3)
rewrites to (in the literature a more familiar representation)

Cf,A(u1, u2) = f (−1)

[
(f(u1) + f(u2))A

(
f(u1)

f(u1) + f(u2)

)]
(2.4)

which reduces to Archimedean copula for A(t) = 1, to Extreme-value copula for
f(t) = − log(t) and to the comonotonicity copula M with A(t) = max(t, 1 − t).
Here the convention 0

0
= ∞
∞ = 1 is considered.

In the general, d-dimensional case, [Charpentier et al., 2014] provide sufficient
conditions for the function Cg,`,

Cg,`(u) = g ◦ `(g(−1)(u1), . . . , g(−1)(ud)), (2.5)

to be a copula, namely that g generates d-variate Archimedean copula and ` is
d-variate stable tail dependence function defined by the following properties:

a) ` is positively homogeneous of degree one,

b) `(e1) = . . . = `(ed) = 1, where ei is i-th unit (basis) vector in Rd,

c) ` is fully d-max decreasing2.

2 i.e., ∀ x1, . . . , xd, h1, . . . , hd ∈ [0,∞] and for any J ⊆ {1, . . . , d} of arbitrary size |J | = k

∑

ι1,...,ιk∈{0,1}
(−1)ι1+...+ιk`(x1 + ι1h111∈J , . . . , xd + ιdhd11∈J) ≤ 0
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These conditions imply (but are stronger than) then the well-known characteris-
tics of stable tail dependence functions (convexity in each argument and boundary
conditions) which are necessary but insufficient.

[Charpentier et al., 2014] also provides stochastic representation for Archimax
copula in the storyline given for Archimedean copulas, specifically Cg,` is survival
copula of

• T d
= Y /Z where Y1, . . . , Yd are unit exponential random variables (indepen-

dent of Z) whose survival copula is Extreme-value with stable tail dependence
function `,

F̄Y (y1, . . . , yd) = e−`(y1,...,yd),

and g is the Laplace transform of Z, g = LZ .

• X d
= R×S where S1, . . . , Sd ∼ B(1, d−1) (Beta distribution) are independent

of R and have joint survival function

F̄S(s1, . . . , sd) = [max(0, 1− `(s1, . . . , sd))]
d−1 ,

with support on {(s1, . . . , sd) ∈ [0, 1]d|`(s1, . . . , sd) ≤ 1}, and g =Wd(FR).

Whenever R ∼ Erlang(d) then g(x) = e−x, consequently Cg,` is EV copula and

X
d
= Y . Whenever g = LZ =Wd(FR=Ed/Z) where Ed ∼ Erlang(d) thenX

d
= Y /Z.

2.2 Other constructions based on Archimedean
generators

There is one class of bivariate copulas (we cannot assign to any above mentioned
groups) that was proposed by [Durante & Jaworski, 2012] to fulfill a certain statis-
tical property and is connected with Archimedean copulas. We summarize it in the
next subsection, followed by a generalization brewed by [Mesiar & Pekárová, 2010].

2.2.1 Univariate conditioning stable

Let C be the copula of random vector (X, Y ), then by (left) α-conditional (or thresh-
old) copula C[α] we denote the copula associated with conditional distribution func-
tion F (x, y) = P(X ≤ x, Y ≤ y|X ≤ F−1

X (α)) which is given by formula

C[α](u, v) = P(U ≤ u, V ≤ v|U < α) =
1

α
C
(
αu, η(−1)(v)

)

where η(v) = 1
α
C(α, v) and its right-inverse η(−1)(v) = sup{t ∈ [0, 1]|

C(α, t) < αv}, see [Mesiar et al., 2008]. Further, by CUCS we denote the set of all
univarate (left) conditioning stable copulas, UCS (or copulas invariant under left
uivariate truncation), i.e, copulas C that are equal to their associated C[α] for all
α ∈ (0, 1), see [Jágr et al., 2010] for some properties and examples3. Perhaps it is

3 For completeness, there exist also bivariate copulas invariant under bivariate conditioning and
they coincide with the Clayton family of Archimedean copulas.
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worth to note, that also any g-ordinal sum4 of collection of copulas from CUCS is
stable under univariate conditioning.

To picture the use of such copulas, take for instance the example given by [Du-
rante & Jaworski, 2012]: when X a Y represent returns of two financial markets
linked by a copula C that is invariant under univariate conditioning, we can say
that the dependence structure does not change when one market is taking on large
losses.

A large class of copulas that fulfill such a invariance property are due to [Durante
& Jaworski, 2012] constructed by means of a one-dimensional function and it is
defined by

C(f)(u, v) = xf (−1)

(
f(y)

x

)
,

C(f̄)(u, v) = x

(
1− f (−1)

(
f̄(y)

x

))
, x ∈ (0, 1],

where - interestingly - f ∈ F2, that is the generators of bivariate Archimedean
copulas, with flippings f̄(x) = f(1 − x) and C(f̄)(x, y) = x − C(f)(x, 1 − y). Note
that C(c f) = C(f), c > 0, moreover C(f) ≤ Π and C(f̄) ≥ Π (and Π /∈ {C(f), C(f̄)}f∈F2

). For example f(x) = 1 − x, the generator of W , gives C(f) = W and C(f̄) = M ,
while f1(x) = ((1−x)−p−1)−1/p with p > 0 and f2(x) = (1−x−p)−1/p with p ∈ [−1, 0)
give C(f̄1) and C(f2) which form the Clayton family of Archimedean copulas. The
only exchangeable copulas in the class CUCS are M and Clayton family copulas.
Further, [Durante et al., 2011] elaborate more on the similarities with Archimedean
copulas: Let (U, V ) be a pair of continuous random variables with Archimedean

copula (generated by f ∈ F2) as distribution function, and let U ′ = f (−1)(V )

f (−1)(U)+f (−1)(V )
;

then C(f) is the distribution function of the random pair (U ′V ). This finding is useful
e.g., for generating random samples from C(f) as well as for statistical inference.

Subsequently, [Mesiar & Pekárová, 2010] proposed a generalization that is in-
spired by viewing Archimax copulas as a distortion of Archimedean copulas. We
glance through it briefly.

2.2.2 Distorted UCS

Let again f ∈ F2 and let d : [0, 1]→ [0, 1] be a function such that

C(f,d)(u, v) = xf (−1)

(
f(y)

d(x)

)
, and its flipping

C(f̄ ,d)(u, v) = x

(
f̄ (−1)

(
f̄(y)

d(x)

))
, x ∈ (0, 1].

Then C(f,d) and C(f̄ ,d) are copulas iff there is a function d̃ : [0, 1] → [0, 1] dual to d
in the sense d̃(x)d(x) = x and both d̃, d are nondecreasing on (0, 1]. The strongest
distortion function d(x) = 1 leads to C(f,d) = Π while the weakest, d(x) = x, gives

4 A g-ordinal sum copula is defined for any disjoint system {(ai, bi)}i∈I of open subintervals of
(0, 1) and any system {Ci}i∈I of copulas by

C(u, v) =

{
aiv + (bi − ai)Ci

(
u−ai
bi−ai , v

)
if u ∈ (ai, bi),

uv otherwise
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C(f,d) = C(f). Authors denotes these distorted copulas briefly as DUCS copulas and
generally they are not univariate conditioning stable.

It can be interesting to see DUCS copula rewritten, C(f,d)(u, v) = d̃(u)C(f)(d(u), v) =

Π(d̃(u), 1)C(f)(d(u), v) to notice that this distortion can be applied to a general cop-
ula (not just C(f)) so that it would become a particular case of construction method
proposed by [Liebscher, 2008] to bring asymmetry5 , i.e., C(u, v) = A(α1(u), α2(v)) ·
B(β1(u), β2(v)) (which is a copula wheneverA,B are copulas and α1, α2, β1, β2 : [0, 1]→
[0, 1] are nondecreasing such that α1(x)β1(x) = α2(x)β2(x) = x, ∀x ∈ [0, 1]), with
α1 = d̃, β1 = d, α2 = 1 and β2 is identity.

2.3 Generators of Archimedean copulas

In this subsection we summarize well-known as well as new construction methods
of generators of Archimedean copulas, categorized according to whether they arise
from a given generator, some given function, by gluing or by agreggating several
generators. For more details (proofs, references and examples) see mainly our papers
[Bacigál et al., 2015], [Bacigál et al., 2015] and [Bacigál et al., 2010].

2.3.1 From a given generator

In the following constructions we will start with some given generator f of an
Archimedean copula.

Construction 1. Let ϕ : [0, 1] → [0, 1] be an automorphism of [0, 1], then the com-
position

fc1 = f ◦ ϕ
is also a generator, in particular a) fc1 ∈ Fd for all f ∈ Fd and some fixed
d ∈ {2, 3, . . .} iff ϕ−1 has (d − 2) derivatives on (0, 1), (ϕ−1)(k)(x) ≥ 0 for all
k ∈ 1, . . . , d− 2 and x ∈ (0, 1), and (ϕ−1)(d−2) is a convex function, see Proposition
3 in [Bacigál et al., 2015]. Similarly b) fc1 ∈ F∞ for all f ∈ F∞ iff ϕ−1 is absolutely
monotonic on (0, 1).

Construction 2. Let η : [0,∞] → [0,∞] be an automorphism such that its inverse
η−1 : [0,∞]→ [0,∞] has (d−2) derivatives (all derivatives) on (0,∞), (η−1)(k)(x) ≥
0 for all x ∈ (0,∞) and k ∈ {1, . . . , d − 2} (k ∈ N) so that (η−1)(d−2) is a convex
function. Then for any f ∈ Fd (any f ∈ F∞) also fc2 ∈ Fn (F∞) given

fc2 = η ◦ f

(see Proposition 5 in [Bacigál et al., 2015]).

Construction 3. Let f ∈ Fd and λ ∈ (0, 1] then for any d ∈ {2, 3, . . .} ∪ {+∞} also
fc3 ∈ Fd, given definition

fc3(x) = f(λx)− f(λ)

obtained as a result of univariate conditioning in [Mesiar et al., 2008] for d = 2 and
further generalized in Proposition 6 by [Bacigál et al., 2015].

5 This is in turn a special case of the construction method pointwise composition of copulas
already metioned at the begining of the chapter. In fact, so are also distortions described in Section
2.1, yet due to different historical origins they are being distinguished from pointwise composition
methods.
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2.3.2 From a given function

Construction 4. Let h : [a1, a2] → [−∞,∞] be a strictly decreasing convex con-
tinuous function. Then for any non-trivial bounded interval [b1, b2] ⊆ [a1, a2] (if
h(a2) = −∞ then [b1, b2] ⊂ [a1, a2)) the function

fc4(x) = h(b1 + x(b2 − b1))− h(b2)

is an additive generator from Fd whenever h is d-monotone and an universal gener-
ator whenever h is totally monotonic. As an example consider the case h = coth,
b1 = 0 and b2 > 0 leading to the generator f(x) = coth(b2x) − coth(b2) we charac-
terized in [Najjari et al., 2014]

Obviously, any additive generator satisfies the constraints of Construction 4, and
hence the method can be seen as an extension and generalization of Construction
3. Moreover, we can generalize Constructions 1 and 2 to make additive generators
by means of Construction 4 in two ways. Either we apply them directly to the
introduced additive generators fc4, or we apply them (in modified form) to the
generating function h. We illustrate the later approach in Theorem 7 of [Bacigál
et al., 2015].

Another construction uses the Williamson and Laplace transforms to get a gen-
erator of Archimedean copula in any dimension (see sections 1.3.2 and 1.3.1, respec-
tively).

Construction 5. Let FX : (−∞,∞)− > [0, 1] with FX(x) = 0 for all x ≤ 0 be a
distribution function of a positive random variable X, then fc5 = g

(−1)
c5 ∈ Fd (F∞)

given that
gc5 =Wd(FX) (gc5 = LX)

for any d ∈ N.

The above construction is in details examined by [Bacigál & Ždímalová, 2017],
where many examples are given. As shown there, the two transformations mostly
yield families with no explicit form of generator f , which complicates its application.
As a remedy we proposed to discretize X so that FX becomes a sum of Dirac func-
tions 6 and the corresponding generator functions g and f are piecewise polynomial
(linear segments constitute g ∈ G2, quadratic g ∈ G3, etc.). We also proved that con-
vergence of such approximation in FX implies convergence in the resulting copula.
The approximation copula is practically a mosaic made of the weakest Archimedean
copula scaled to each discretization cell (d-dimensional hypercube).

There is also another interesting aspect of the construction method. Since distri-
bution of a single random variable can generate a stochastic dependence structure,
one may ask what is the connection between their statistical properties and how can
we use them to design (or identify) a joint distribution of some random variables
of our interest? We raise this question in [Bacigál, 2017] as particular open prob-
lems. To briefly illustrate the matter, note that, for instance, single-valued X (no
more a ‘variable’) leads to counter monotonic dependence through the Williamson
2-transform and to independence by the Laplace transform. On the other hand,
independence is linked by the inverse Williamson d-transform with the sum of d
independent and exponentially distributed random variables, which follows the so-
called Erlang probability distribution. Further, the exponential distribution with

6 Dirac function is defined as δx0
(x) =

{
0 x < x0

1 x ≥ x0
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arbitrary parameter gives the same copula (Clayton with parameter p = 1) through
the Laplace transform.

Construction 5 can be extended such that we start with an arbitrary generator
ending up with generator of Archimedean copula in different dimension, such as
proposed in the following construction that formally belongs to Section 2.3.1.

Construction 6. Take, for an arbitrary m ∈ N, an additive generator f = g(−1) ∈ Fm,
introduce a positive distance function F = W−1

m (g), possibly modify F into a new
positive distance function F̃ (e.g. F̃ (x) = F (x− a) for a fixed constant a ∈ (0,∞)),
finally for a fixed n ∈ N apply Construction 5, i.e, g̃ =Wn(F̃X) so that f̃ ∈ Fn.

2.3.3 Gluing

Another construction method for additive generators from F2 is based on the gluing
of two additive generators from F2 [Bacigál et al., 2015, Theorem 8]. Note that due
to the Williamson transform this approach can be extended to any dimension.

Construction 7. Let f1, f2 ∈ F2 and k ∈ (0, 1) be given. Then

fc7(x) =

{
f1(x)
f1(k)

if x ∈ [0, k],
f2(x)
f2(k)

otherwise

generates 2-dimensional Archimedean copula whenever
f ′1−(k)

f1(k)
≤ f ′2−(k)

f2(k)
. Observe that

the resulting copula Cc7 can be viewed as the gluing of copulas C1, C2 (generated by
f1,f2, respectively) via an interpolation method, Cc7(x, y) = C1(x, y) for all (x, y) ∈
[0, k]2, and C(x, y) = C2(x, y) for all (x, y) ∈ [k, 1]2 such that f2(x) + f2(y) ≤ f2(k).
Also the positive multiplicative constants do not influence our gluing method.

2.3.4 Aggregation

In this subsection we briefly characterize aggregation functions7 preserving the
classes F2 and G2. The topic is in details covered by our paper [Bacigál et al.,
2015].

Note, first of all, that the class F is convex, i.e., for any f1, . . . , fn ∈ F2 and
c1, . . . , cn ∈ [0, 1],

∑n
i=1 ci = 1, also f =

∑n
i=1 cifi ∈ F2. Due to the already

mentioned fact that any positive multiple c f of an additive generator f ∈ F2 is
again an additive generator, c f ∈ F2, we see that one can relax the constraint∑n

i=1 ci = 1 into
∑n

i=1 ci > 0, i.e., any non-trivial non-negative linear combination
of additive generators from F is again an element of F . For more details and
examples see our older paper [Bacigál et al., 2010].

Construction 8. Let n ∈ {2, 3, . . . }, A : [0,∞]n → [0,∞] be an aggregation function,
and f1, . . . , fn ∈ F2. Then relation

fc8 = A(f1, . . . , fn)

yields a generator from F2 whenever A is a continuous jointly strictly increasing
aggregation function satisfying8 2A

(
x + y

2

)
≤ A(x)+A(x+y) for all x,y ∈ (0,∞)n,

7 For n ∈ {2, 3, . . . }, an aggregation function A : [a, b]n → [a, b] is characterized by the increasing
monotonicity in each coordinate and by boundary conditions A(a, . . . , a) = a and A(b, . . . , b) = b.
8 The following sufficient and necessary condition for A to preserve F2 can be seen as a weaker

form of the so-called Jensen convexity and the ultramodularity, see Remark 1 in [Bacigál et al.,
2015].
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see Theorem 2 of [Bacigál et al., 2015]. Examples of A count weighted sum, product,
maximum and p-norm.

Note that each composition of such aggregation functions will again satisfy all
constraints of this construction. Moreover, if A has 0 as its annihilator (i.e., if
xi = 0 for some i ∈ {1, . . . , n} then A(x1, . . . , xn) = 0) also new aggregation given
by A(x1 + c1, . . . , xn + cn) = 0, where ci ≥ 0 and

∏n
i=1 ci = 0, will also satisfy the

constraints of this construction.
As for aggregating pseudo-inverses, observe first that g1, g2 ∈ G2 generate the

same Archimedean copula if and only if g1(x) = g2(c x) for some constant c ∈
(0,∞). Similarly to class F2, also the class G2 is convex, see [Bacigál et al., 2010].
However, one should stress that a non-trivial convex combination of pseudo-inverses
g1, . . . , gn ∈ G2 related to a given Archimedean copula C yields a pseudo-inverse g ∈
G2 linked to some different copula D (contradicting the related convex combination
of additive generators).

Construction 9. Let n ∈ {2, 3, . . . }, A : [0,∞]n → [0,∞] be an aggregation function,
and g1, . . . , gn ∈ G2. Then

fc9 = A(g1, . . . , gn)

is a generator pseudo-inverse from G2 whenever A is a continuous weak9 jointly
strictly increasing aggregation function satisfying10 A

(
x+y

2

)
≤ A(x)+A(y)

2
for all

x,y ∈ (0, 1)n, x ≥ y (such that if xi = yi then xi = yi = 0, i ∈ {1, . . . , n}),
see [Bacigál et al., 2015, Theorem 3].

Due to the relaxed joint strict monotonicity in Construction 8, one can con-
struct aggregation functions preserving pseudo-inverses of additive generators of
Archimedean copulas by means of aggregation functions preserving additive gener-
ators of Archimedean copulas, but not vice-versa.

2.4 Dependence functions

In this subsection we summarize constructions that 1) link dependence functions
to powers of generators in Archimax copulas, or 2) combine two or more possibly
symmetric dependence functions into an asymmetric one, and finally, 3) are based
on partitions.

2.4.1 Linked to power of generator

First, please recall that when f ∈ F2 then also its power fλ ∈ F2, λ ≥ 1 (due to
Construction 2).

Construction 10. Let Cf,A be an Archimax copula with generator f and dependence
function A. Then for any f ,A and λ ≥ 1, the Archimax copula Cfλ,A is also an

9 The monotonicity of pseudo-inverses g ∈ G2, i.e., the fact that it is strictly decreasing on [0, a]
and that it vanishes on [a,∞], with a = Min(x ∈ (0,∞)|g(x) =∞) (observe that due to g(∞) = 0
and continuity of g, a is well defined), is preserved by an aggregation function A if and only if
A(x) > A(y) for all x,y ∈ [0, 1]n such that x1 ≥ y1, . . . , xn ≥ yn, A(y) > 0, and if yi > 0 then
xi 6= yi, i ∈ {1, . . . , n}. We will call this property weak joint strict increasingness of A. Obviously,
each jointly strictly increasing aggregation function A is also weak jointly strictly increasing.
10 Due to the continuity of A the following property can be seen as an ordered convexity (ultra-

modularity), now on the [0, 1] scale.



2.4. DEPENDENCE FUNCTIONS 17

copula based on generator f , specifically Cfλ,A = Cf,Ac10 where

Ac10(t) = A(λ)(t)

[
A

((
t

A(λ)(t)

)λ)]1/λ

,

with A(λ)(t) =
(
tλ + (1− t)λ

)1/λ
(dependence functions of the Gumbel family), see

Proposition 2.1 of [Bacigál et al., 2011].

This construction reveals an important fact about the structure of Archimax
copulas. For any generator f , classes Afλ of Archimax copulas based on generators
fλ, λ ∈ [1,∞), are nested, and Afλ $ Afµ whenever 1 ≤ µ < λ ≤ ∞, where
Af∞ =

⋂∞
λ=1Afλ = {M}. Therefore it is important to know the basic form ḟ of

each generator f , f = ḟλ, such that for any λ ∈ (0, 1), ḟλ is no more convex. Such
generators ḟ will be called basic generators and they correspond to Archimedean
copulas Cḟ such that for any p > 1, the corresponding Lp-norm ‖Cḟ‖p > 1 (for more
details we recommend [De Baets et al., 2010; Mesiarová, 2007]). Due to Proposition
2.2 of [Bacigál et al., 2011] we may find it through relation ḟ = f 1−α where α =

inf
{
f(x)f ′′(x)
(f ′(x))2

∣∣ x ∈]0, 1[and f ′(x), f ′′(x) exist
}

and (due to Proposition 2.3 of [Bacigál

et al., 2011]) check if some generator f is basic through property ḟ ′(1−) 6= 0.

2.4.2 Combination

Construction 11. Let A1, . . . , An be dependence functions. Then for any probability
vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n,

∑n
i=1 ai =

∑n
i=1 bi = 1, also the function

Ac11(t) =
n∑

i=1

(tai + (1− t)bi)Ai
(

tai
tai + (1− t)bi

)
.

is a dependence function. For (a1, . . . , an) = (b1, . . . , bn) it turns into the standard
convex sum A(t) =

∑n
i=1 aiAi(t).

Given and prooved as Proposition 3.1 of our paper [Bacigál et al., 2011], observe
that this method can be deduced by induction from the original formula given in
[Khoudraji, 1995], as well as seen as extension of Proposition 3 of [Genest et al.,
1998] dealing with A1, A2.

Construction 11 was further extended to d-dimensional case by [Mesiar & Jagr,
2013] in terms of tail dependence function `:

Construction 12. Let `1, . . . , `n be tail dependence functions and let αji ≥ 0 and∑n
j=1 αji = 1, j ∈ {1, . . . , n}, i ∈ {1, . . . , d}. Then the function ` → [0,∞)d →

[0,∞) given by

lc12(x1, . . . , xd) =
n∑

j=1

`j(αj1x1, . . . , αjdxd)

is also a tail dependence function. Moreover, if αji = λj, j ∈ {1, . . . , n}, ∀i, j, then
`c12 =

∑n
j=1 λj`j is the standard convex sum.

Evidently, it allows to introduce asymmetric Archimax copulas even if starting
from symmetric Archimax copulas, similarly to the following construction method.

Construction 13. For a dependence function A denote by B a [0, 1] → [0.1] func-
tion given by B(t) = A(t) − 1 + t. Each such a B is characterized by its convex-
ity, non-decreasingness and boundary conditions max(0, 2t − 1) ≤ B(t) ≤ t with
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pseudo-inverse B(−1)(u) = sup{t ∈ [0, 1]|B(t) ≤ u}. Let A1, . . . , An be dependence
functions with corresponding functions B1, . . . , Bn and let (λ1, . . . , λn) ∈ [0, 1]n be
a probability vector. Then

Ac13(t) =

(
n∑

i=1

λiB
(−1)
i

)(−1)

(t) + 1− t

is a dependence function, see Proposition 3.3 of [Bacigál et al., 2011].

2.4.3 Partitioning

By the following construction we briefly summarize result of [Mesiar & Jagr, 2013],
see Theorem 3.1.

Construction 14. For a fixed d ≥ 2, consider a partition P = {B1, . . . , Bk} of the
set {1, . . . , d}. Then

`c14(x1, . . . , xd) =
k∑

j=1


∨

i∈Bj
xi


 ,

where
∨

denotes maximum, is a tail dependence function. For instance, the finest
partition P∗ = {{1}, . . . , {d}} gives `∗(x) = x1 + . . . + xd while the coarse one,
P∗ = {1, . . . , d}, results to `∗(x) = max(x1, . . . , xd).

The corresponding EV copula C(u1, . . . , ud) =
∏k

j=1min(ui|i ∈ Bj) describes
the stochastic dependence structure of random variables (X1, . . . , Xd) such that for
any Xn, Xm, if n,m ∈ Bj for some j, then Xn and Xm are co-monotone, otherwise
they are independent.



Chapter 3

Applications

Previous chapter have provided a theoretical basis - either our results or methods
well-known in the literature - necessary for understanding our contributions in prac-
tical dependence modeling. Yet in the first subsection we summarize methods of
model building and outline the possible outcomes needed in practice. Then software
solutions is introduced and finally we discuss several representative study cases.

3.1 Model building and inference

Usually the procedure to build a model of dependence using copulas start with
plotting the individual data series X1j, . . . , Xnj, j = 1, . . . , d, (most often time
series) to 1) inspect serial dependence - temporal, spatial - and in case of doubts
test it formally (test for trend, seasonality, periodicity, autocorrelation, structural
breaks etc.). An eventual serial dependence needs to be removed by a suitable model
so that residuals are independent and identically distributed, in order to prevent a
bias in copula model estimates. The next step is to 2) rescale the individual data
series into [0, 1] interval by means of their (marginal) distribution functions, either
parametric (if they are known), or empirical

Fj(x) =
1

n+ 1

n∑

i=1

1Xij≤x, j = 1, . . . , d,

where 1A is the indicator function which yields 1 whenever A is true and 0 otherwise,
so that after the transformation we get pseudo-observations Uij = Fj(Xij). After
3) plotting them in a scatter plot (often a matrix of bivariate scatter plots) an
inspection of dependence structure helps to choose suitable parametric families of
copulas to be 4) estimated. Finally 5) the estimated copula models needs to be
verified by a goodness-of-fit (GOF) test.

Basically there are two main methods recently used for estimating one-parameter
families. One uses various measures of dependence, such as Kendall’s tau through
formal relation with parameter θ of a copula Cθ,

τ(θ) = 4

∫∫

[0,1]2
Cθ(u, v)dCθ(u, v)− 1,

the another is based on maximization of a likelihood function

L(θ) =
n∑

i=1

log (cθ(Ui1, . . . , Uid))

19



20 CHAPTER 3. APPLICATIONS

employing copula density cθ (which is n-order mixed derivative with respect to all
variables), see [Genest et al., 1995]. For general multi-parameter copulas Cθ (not,
e.g., the multivariate normal or pair-copulas) the first method is problematic and
to our best knowledge no satisfactory study has been presented so far.

Goodness of fit can be checked by comparing (L2-norm) squared distances

Sn =
n∑

i=1

(Cn(Ui1, . . . , Uid)− Cθ(Ui1, . . . , Uid))2

between estimated parametric copulas Cθ and empirical copula function

Cn(u1, . . . , ud) =
1

n

n∑

i=1

1Ui1≤u1 . . . 1Ui,n≤un , (u1, . . . , ud) ∈ [0, 1]d,

or alternatively - instead of copula - using the Kendall’s distribution function

KC(w) = P(C(U, V ) < w) =

∫

[0,1]2
1C(u,v)≤wdC(u, v), w ∈ [0, 1],

calculated from parametric copula C and estimated from observations. For further
details and alternatives see [Genest et al., 2009].

The best fitting copula models can be used for various purposes, e.g., a) by
inspecting properties such as tail dependence and various symmetries it can be
made inference about the true underlying distribution, calculate b) probabilities that
some (or all) variables will (not) exceed certain threshold, or conversely, c) quantiles
which will be (not) exceeded with some uncertainty. Consider the following cases,
for simplicity with just two variables:

• P(U ≤ u ∧ V ≤ v) = C(u, v), probability of simultaneous non-exceedence;

• P(U > u∨V > v) = 1−C(u, v), at least one variable will exceed its threshold;

• P(U ≤ u ∧ V ≤ v) = 1− u− v + C(u, v), simultaneous exceedence;

• P(U ≤ u|V = v) = ∂C(u,v)
∂v

, conditional probability, and similarly

• P(U ≤ u|V ≤ v) = C(u,v)
v

,

• P(U > u|V > v) = 1− u−C(u,v)
1−v .

In practice, a level curves plot is often useful, e.g., for reading the return period of
some hydrological phenomenon such as flood or drought.

3.2 Software tools

Since the turn of century when copulas began to attract attention of masses, several
software tools arose. The first public yet commercial to mention was EVANESCE
library [Carmona & Morrisson, 2000] included in FinMetrics extension to S pro-
gramming environment (predecessor of R), that provided a rich battery of copula
classes, though only bivariate. With growing popularity of R (free software environ-
ment for statistical computing and graphics, [R Core Team, 2016]) there emerged
open-source packages like copula [Hofert et al., 2017] and VineCopula [Schepsmeier
et al., 2017] that are still under vivid development. For further reading about copula
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software, both commercial and open-source, see our paper [Bacigál, 2012]1, here we
summarize major features of the two above mentioned R packages and introduce
our own.

3.2.1 Well established packages for R

The package VineCopula provides tools for the statistical analysis of vine copula
models, which represent an flexible construction method of higher dimensional cop-
ulas based on bivariate copulas, conditioning and a graphical tool for labeling con-
straints in high-dimensional probability distributions. The package includes tools
for parameter estimation, model selection, simulation, goodness-of-fit tests, and vi-
sualization as well as tools for estimation, selection and exploratory data analysis of
bivariate copula models (several Archimedean, two elliptical and EV copulas, with
rotations).

The package copula implements commonly used (two elliptical, five Archimedean,
four extreme-value and other) copula families, as well as their rotations, mixtures
and asymmetrizations, moreover it provides nested Archimedean (hierarchical) cop-
ulas with related tools, methods for density, distribution, random number gener-
ation, bivariate dependence measures, Rosenblatt transform, Kendall distribution
function, perspective and contour plots. Fitting of copula models with potentially
partly fixed parameters, including standard errors, serial independence tests, copula
specification tests (independence, exchangeability, radial symmetry, extreme-value
dependence, goodness-of-fit) and model selection based on cross-validation is pro-
vided as well. Finally, empirical copula, smoothed versions, and non-parametric
estimators of the Pickands dependence function are mentioned in the description.

3.2.2 R package acopula

In the present subsection, which is built on our paper [Bacigál, 2013c] later extended
in [Bacigál, 2013b], we introduce our software package acopula developed under
the environment R and provided for public use since 2013 on the Comprehensive
R Archive Network (CRAN) which is an official database of packages for R, see
[Bacigál, 2013a]. It extended current offerings (on the imaginary software market)
a) by class of Archimax copulas and b) by several handy tools to test, modify,
manipulate and inference both from them and from arbitrary user-defined continuous
copulas, thus making copulas ready for application. That explains the initial letter
of the package name.

The motivation for such a project lies in the lack of inference tools back in
the years of its birth, before 2013. The software solutions available around were
able to fit copulas and generate random samples, but did not offer calculation of
neither conditional probabilities nor quantiles needed in practice mainly for predic-
tion and assessing risk. Also our research was focused on the superclass embracing
Archimedean and EV copulas, that had and still has no support in copula software.

1 The referenced paper may now appear a bit out-dated considering a rapid development com-
mon for information technologies, however the truth is that implementation of copula modeling
routines in modern commercial software ceased at few popular families such as Gaussian, Gumbel,
Frank, Clayton and possibly t-copula, with some bright exceptions including, e.g., experimental
support for hierarchical copulas in SAS. Thus the development is concentrated practically in open-
source environments of which R became the key player in academic (research and education) as
well as commercial space (mainly econometrics and risk management).
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We made the package to be relatively simple for researchers and practitioner to an-
alyze their data and even easily insert their own copula definitions, as demonstrated
bellow.

Every parametric class/family of copulas is defined within a list, either by its gen-
erator (in case of Archimedean copulas), Pickand’s dependence function (Extreme-
Value copulas) or directly by cumulative distribution function (CDF) with/or only
by its density. Example of one such definition list follows2 for generator of Gumbel-
Hougaard family of Archimedean copulas

> genGumbel()
$parameters
[1] 4
$pcopula
function (t, pars) exp(-sum((-log(t))^pars[1])^(1/pars[1]))
$gen
function (t, pars) (-log(t))^pars[1]
$gen.der
function (t, pars) -pars[1]*(-log(t))^(pars[1]-1)/t
$gen.der2
function (t, pars) pars[1]*(-log(t))^(pars[1]-2)*(pars[1]-1-log(t))/t^2
$gen.inv
function (t, pars) exp(-t^(1/pars[1]))
$gen.inv.der
function (t, pars) -exp(-t^(1/pars[1]))*t^(1/pars[1]-1)/pars[1]
$gen.inv.der2
function (t, pars)
exp(-t^(1/pars[1]))*t^(1/pars[1]-2)*(pars[1]+t^(1/pars[1])-1)/pars[1]^2
$lower
[1] 1
$upper
[1] Inf
$id
[1] "Gumbel"

where, though some items may be fully optional (here \$pcopula and \$id), they
can contribute to better performance or transparency. The user is encouraged to de-
fine new parametric families of Archimedean copula generator (likewise dependence
function or copula in general) according to his/her needs, bounded only by this con-
vention and allowed to add pcopula (stands for probability distribution function or
CDF), dcopula (density) and rcopula (random sample generator) items.

Currently implemented generators can be listed.

> ls("package:acopula",pattern="gen")
[1] "genAMH" "genClayton" "generator" "genFrank" "genGumbel" "genJoe" "genLog"

Notice the generic function generator which links to specified definition lists.
Similarly, Pickand’s dependence functions are defined, namely Gumbel-Hougaard,

Tawn, Galambos, Hüsler-Reiss (last three form only bivariate EV), extremal dep.
functions and generalized convex combination of arbitrary valid dep. functions (see
[Mesiar & Jagr, 2013]). So are definition lists available for generic (i.e., not nec-
essarily Archimax) copula, e.g. normal, Farlie-Gumbel-Morgenstern, Plackett and
Gumbel-Hougaard parametric family. Their corresponding function names starts
with dep and cop, respectively.

2Output printing is simplified whenever contains irrelevant parts.
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As the class of Archimax copulas contains Archimedean and EV class as its spe-
cial cases, the setting depfu = dep1() and generator = genLog() can distinguish
them, respectively.

Any definition list item can be replaced already during the function call as shown
bellow. Thus one can set starting value of parameter(s) and their range in estimation
routine, for instance.

First thing one would expect from a copula package is to obtain a value of desired
copula in some specific point. To show variability in typing commands, consider
again Gumbel-Hougaard copula with parameter equal to 3.5 in point (0.2,0.3). Then
the following commands give the same result.

> pCopula(data=c(0.2,0.3),generator=genGumbel(),gpars=3.5)
> pCopula(data=c(0.2,0.3),generator=genGumbel(parameters=3.5))
> pCopula(data=c(0.2,0.3),generator=generator("Gumbel"),gpars=3.5)
> pCopula(data=c(0.2,0.3),generator=generator("Gumbel",parameters=3.5))
> pCopula(data=c(0.2,0.3),copula=copGumbel(),pars=3.5)
> pCopula(data=c(0.2,0.3),copula=copGumbel(parameters=3.5))
> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(),dpars=3.5)
> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(parameters=3.5))
[1] 0.1723903

If we need probabilities that a random vector would not exceed several points, those
can be supplied to data in rows of matrix or data frame.

Conversely, given an incomplete point and a probability, the corresponding quan-
tile emerge.

> pCopula(c(0.1723903,0.3),gen=genGumbel(),gpar=3.5,quantile=1)
> pCopula(c(NA,0.3),gen=genGumbel(),gpar=3.5,quan=1,prob=0.1723903)
> qCopula(c(0.3),quan=1,prob=0.1723903,gen=genGumbel(),gpar=3.5)
[1] 0.1999985

Conditional probability P (X < x|Y = y) of a random vector (X, Y ) has similar
syntax.

> cCopula(c(0.2,0.3),conditional.on=2,gen=genGumbel(),gpar=3.5)
[1] 0.2230437
> qCopula(c(0.3),quan=1,prob=0.2230437,cond=c(2),gen=genGumbel(),gpar=3.5)
[1] 0.200005

Density of a copula can be visualized such as in the following example.

x <- seq(0,1,length.out=30)
y <- seq(0,1,length.out=30)
z <- dCopula(expand.grid(x,y),generator=genGumbel(),gpars=3.5)
dim(z) <- c(30,30)
persp(x,y,z)

x

y
z
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If definition lists do not contain explicit formulas for (constructing) density, the
partial derivatives are approximated linearly. This is mostly the case with 3- and
more-dimensional copulas.

Sampling from the copula is, unsurprisingly, also provided.

sample <- rCopula(n=1000,dim=2, generator=genGumbel(), gpars=3.5)
plot(sample)
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Sometimes no assumption about parametric family of copula is made, instead an
empirical distribution is of more interest. Then for a given data, say, the previous
random sample, one may ask for value of empirical copula in specific point(s) and
more easily in the points of its discontinuity.

> pCopulaEmpirical(c(0.2,0.3),base=sample)
[1] 0.14
> empcop <- pCopulaEmpirical(sample)
> scatterplot3d::scatterplot3d(cbind(sample,empcop),type="h",angle=70)
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Currently, there are two universal methods for parameters estimation imple-
mented in the package (named technique): ”ML”, maximum (pseudo)likelihood
method employing copula density, and ”LS”, least squares method minimizing dis-
tance to empirical copula. Each ’technique’ supplies function to perform optimiza-
tion procedure over, thus finding those parameters that correspond to an optimum.
The ’procedures’ are three: ”optim”, ”nlminb” and ”grid”. First two are system
native, based on well-documented smart optimization methods, the third one uses
brute force to get approximate global maximum/minimum and can be useful with
multi-parameter copulas, at least to provide starting values for the other two ’pro-
cedures’. The next few examples sketch various options one has got for copula
fitting.

> eCopula(sample,gen=genClayton(),dep=depGumbel(),
+ technique="ML",procedure="optim",method="L-BFGS-B")
generator parameters: 0.09357958
depfun parameters: 3.52958
ML function value: 82.63223
convergence code: 0
> eCopula(sample,gen=genClayton(),dep=depGumbel(),tech="ML",proc="nlminb")
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generator parameters: 0.09183014
depfun parameters: 3.533706
ML function value: 82.63228
convergence code: 0
> eCopula(sample,gen=genClayton(),dep=depGumbel(), tech="ML",proc="grid",
+ glimits=list(c(0),c(5)),dlimits=list(c(1),c(10)),pgrid=10)
generator parameters: 0.5555556
depfun parameters: 3
ML function value: 80.63322
convergence code:

So far, no precision for copula parameters is provided.
Having set of observations, it is often of great interest to test whether the esti-

mated copula suffices to describe dependence structure in the data. For this purpose
many goodness-of-fit tests were proposed, yet the principle remains to use different
criterion than was employed with estimation of the copula parameters. Here we im-
plement one of the ’blanket’ tests described in [Genest et al., 2009] that is based on
Kendall’s transform. In the example below normal copula is tested on the Gumbel
copula sample data.

> gCopula(sample,cop=copNormal(),
+ etechnique="ML",eprocedure="optim",ncores=1,N=100)
Loading required package: mvtnorm
|===============================================================| 100%

Blanket GOF test based on Kendall’s transform

statistic q95 p.value
0.1195500 0.1658125 0.1800000
-----------------------------
data: sample
copula: normal
estimates:
pars fvalue
0.9155766 80.3420886

Although the p-value does not lead to rejection of the copula adequacy, its low
value and small data length arouse suspicion. As for the other arguments, N sets
number of bootstrap cycles whereas their parallel execution can be enabled by setting
number of processor cores in ncores. Package mvtnorm has been loaded to assist
with simulation from normal copula, and when missing, internal but slower routine
would be performed instead.

The traditional parametric bootstrap-based procedure to approximate p-value,
when theoretical probability distribution of the test statistic is unknown, is reliable
yet computationally very exhaustive, therefore recently a method based on multiplier
central limit theorem and proposed by [Kojadinovic et al., 2011] becomes popular
with large-sample testing. Its implementation to testing goodness of parametric
copula fit is scheduled for next package update. Nevertheless, the multiplier method
takes part here in another test comparing two empirical copulas, i.e. dependence
structure of two data sets, see [Rémillard & Scaillet, 2009]. In the following example,
random sample of the above Gumbel-Hougaard copula is tested for sharing common
dependence structure with sample simulated from Clayton copula, parameter of
which corresponds to the same Kendall’s rank correlation (τ = 0.714).

> sampleCl <- rCopula(n=100,dim=2,generator=genClayton(),gpars=5)
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> gCopula(list(sample,sampleCl),ncores=1,N=100)
|==========================================================| 100%

Test of equality between 2 empirical copulas

statistic q95 p.value
0.09791672 0.52893392 0.66000000
-----------------------------
data: sample sampleCl
copula:
estimates:
NULL

Obviously, the test fails to distinguish copulas with differing tail dependence, at least
having small and moderate number of observations, however it is sensitive enough
to a difference in rank correlation.

The last procedure to mention checks the properties of a d-dimensional copula
(d ≥ 2), that is, being d-increasing as well as having 1 as neutral element and 0
as annihilator. The purpose is to assist approval of new copula constructs when
theoretical proof is too complicated. The procedure examines every combination of
discrete sets of copula parameters, in the very same fashion as within ”grid” proce-
dure of eCopula, by computing a) first differences recursively over all dimensions of
an even grid of data points,i.e., C-volumes of subcopulas, b) values on the margin
where one argument equals zero and c) where all arguments but one equals unity.
Then whenever the result is a) negative, b) non-zero or c) other than the one partic-
ular argument, respectively, a record is made and first 5 are printed as shown below.
In the example we examine validity of an assumed Archimedean copula generated
by Gumbel-Hougaard generator family, only with a parameter being out of bounds.

> isCopula(generator=genGumbel(lower=0),dim=3,glimits=list(0.5,2),
+ dagrid=10,pgrid=4,tolerance=1e-15)

Does the object appears to be a copula(?): FALSE

Showing 2 of 2 issues:

dim property value gpar
1 2 monot -0.1534827 0.5
2 3 monot -0.1402209 0.5

Three parameter values (0.5, 1, 1.5, 2) were used, each supposed copula were evalu-
ated in 103 grid nodes, and every violation of copula properties (the most extremal
value per dimension and exceeding tolerance) were reported. Thus it is seen, that
parameter value 0.5 does not result in copula because 3-monotonicity is not fulfilled
(negative difference already in the second-dimension run). Note that without redef-
inition of lower bound the parameter value 0.5 would be excluded from the set of
Gumbel-Hougaard copula parameters.

For the acopula package to work many utility functions were created during
development that were neither available in the basic R libraries nor they were found
in contributed package under CRAN. Most of them are hidden within the procedures
described above, however the two following are accessible on demand. The first to
mention is a linear approximation of partial derivative of any-dimensional function
and of any order with specification of increment (theoretically fading to zero) and
area (to allow semi-differentiability)
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> fun <- function(x,y,z) x^2*y*exp(z)
> nderive(fun,point=c(0.2,1.3,0),order=c(2,0,1),difference=1e-04,area=0)
[1] 2.600004

whereas the second utility function numerically approximates integration (by trape-
zoidal rule) such as demonstrated on example of joint standard normal density with
zero correlation parameter

> nintegrate(function(x,y) mvtnorm::dmvnorm(c(x,y)),
+ lower=c(-5.,-5.),upper=c(0.5,1),subdivisions=30)
[1] 0.5807843
> pnorm(0.5)*pnorm(1)
[1] 0.5817583

fine-tuned by number of subdivisions.
To conclude, all the introduced and exemplified procedures are (a) extendible

to arbitrary dimension, which is one of the significant contributions of the package.
If explicit formulas are unavailable (through definition lists) then numerical ap-
proximation does the job. Another significant benefit is brought by (b) conditional
probability and quantile function of the copula, as well as estimation methods based
on least squares and grid complementing the usual maximum-likelihood method.
Together with implementing (c) generalization of Archimedean and Extreme-Value
by Archimax class with a (d) construction method of Pickand’s dependence func-
tion, (e) test of equality between two empirical copulas, (f) numerical check of cop-
ula properties useful in new parametric families development, and (g) parallelized
goodness-of-fit test based on Kendall’s transform, these all (and under one roof)
make the package competitive among both proprietary and open-source software
tools for copula based analysis, to the date.

That the package has found its place among people we can show by monthly
download statistics aggregated from logs (records) that are provided by the CRAN
mirror of RStudio - an integrated development environment for R which has practi-
cally become a standard (with no relevant competitor) [RStudio Team, 2016]. Figure
3.1 shows roughly 250 downloads of acopula per months comparing to approx. 1000
downloads of VineCopula and 2500 downloads of copula package. Considering the
other two are still actively developed and focusing on multidimensional copula con-
structions (either Vine or hierarchical) for practical application while acopula aimed
at providing framework for new (mostly bivariate) Archimax copula development,
these are nice results. Needless to say, the numbers are not all the new users, some
significant amount can be attributed to repetitive downloads due to annual releases
of R main subversions, that by default (but not necessarily) requires re-installation
of extra packages, and to updates of the existing package installations.

3.3 Case studies

Though copulas are known since the late fifties, it took approx 40 years to start
gaining considerable popularity in applied sciences. The major part of the pie is
held by fields where earning or saving substantial amount of money is involved such
as quantitative finance, risk management and actuarial sciences, followed by fields
where human health and environmental hazards are in stake such as biostatistics,
hydrology, climatology and the like. In this subsection, we will catalog not even the
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Figure 3.1: Monthly downloads of three copula packages.

most outstanding works 3, instead we directly proceed to studies we have carried out
during the last ten years, either a) to show that our particular construction methods
are able to give copulas that explain real data dependence structure better than the
usual ones, or b) to analyze patterns in relation between variables of interest.

In our early works, we showed suitability of Archimax copulas for modeling
non-exchangeable random variables with Archimax copulas, either focusing on a
new way of parameters estimation [Capri2008, SvF2008] or employing newly con-
structed dependence functions based on Constructions 11 to 13 [Bacigál et al., 2011]
and Construction 14 [Bacigál & Mesiar, 2012]. As the particular data displaying
non-exchangeability property we used the monthly discharges of the river Danube
and its tributary Inn. The natural causality of river flow was also used in [Pekárová &
Bacigál, 2011] to demonstrate appropriateness of another asymmetric copula model,
the (distorted) univariate conditioning stable copulas described in Section 2.2, along-
side with rather symmetric actuarial data Loss and ALAE4.

Superior fit of a particular Archimedean copula family based on Construction 4
to hydrologic (peak river flow and the corresponding flood volume) and meteorologic
data (temperature maxima and minima) was demonstrated in [Najjari et al., 2014].

On the other hand in the series of hydrological papers we jointly analyzed two
random variables associated with extremal events - maximal river flow (flood peak)
and volume of water flown within the same event (flood volume) - to both charac-
terize changes in the relationship and to predict amount of volume occurred during
a flood with observed peak.

Specifically, in [Bacigál et al., 2012] we built up joint distribution on summer
discharge maxima series recorded during 1877-2002 in the Vltava-Kamýk dam pro-
file and the corresponding volumes, also examined effect of marginal distributions

3 If interested, please see for instance [Genest et al., 2009] who provide bibliometric evidence to
illustrate the development of copula theory in statistics, actuarial science and finance and identifies
challenges for he future, further the recent paper [Hao & Singh, 2016] review dependence modeling
methods and applications in hydrology, climatology and water resources, we also recommend to
read Preface in [Durante & Sempi, 2015] for a quick and critical survey on the use of copulas in
practice.
4 Loss represents amounts that an insurance company pays for claims made under the insurance

contract, ALAE stands for alocated loss adjustment expenses - the claim settlement process not
attributable to specific claims, e.g., the cost of hiring an attorney to defend a specific claim.



3.3. CASE STUDIES 29

and volume construction on the fitting results, consequently in [Szolgay et al., 2012]
the volume was estimated as a quantile (alternatively an expected or mean value)
of distribution function conditional on the value of maximum discharge with 10
000 years return period. Employing several alternative settings, such as two con-
structions of flood wave volume, five copulas, three location measures, marginal
distributions and return period values, the results varied hugely. Thus for similar
analysis we recommended paying the greatest attention to choice of the copula shape
and parametric marginals, in both cases counting in upper-tail behavior, supported
by interpretability. Prediction of flood wave volume is used to design hydromechanic
structures.

Then in [Szolgay et al., 2016] we analyse the bivariate relationship between flood
peaks and volumes in regional context with a focus on flood generation processes
in general, the regional differentiation of these and the effect of the sample size on
reliable discrimination among models. A total of 72 catchments in North-West of
Austria are analyzed for the period 1976–2007. From the hourly runoff data set, 25
697 flood events were isolated and assigned to one of three flood process types: syn-
optic floods (including long- and short-rain floods), flash floods or snowmelt floods
(both rain-on-snow and snowmelt floods). The first step of the analysis examines
whether the empirical peak-volume copulas of different flood process types are re-
gionally statistically distinguishable, separately for each catchment and the role of
the sample size on the strength of the statements. The results indicate that the
empirical copulas of flash floods tend to be different from those of the synoptic and
snowmelt floods. The second step examines how similar are the empirical flood
peak-volume copulas between catchments for a given flood type across the region.
Empirical copulas of synoptic floods are the least similar between the catchments,
however with the decrease of the sample size the difference between the performances
of the process types becomes small. The third step examines the goodness-of-fit of
different commonly used copula types to the data samples that represent the annual
maxima of flood peaks and the respective volumes both regardless of flood generat-
ing processes (the traditional engineering approach) and also considering the three
process-based classes. Extreme-value copulas show the best performance both for
synoptic and flash floods, while the Frank copula (which is also radially symmetric)
shows the best performance for snowmelt floods. It is concluded that there is merit
in treating flood types separately when analysing and estimating flood peak-volume
dependence copulas.
The paper summarize and is extended in partial works [Szolgay et al., 2015, 2016;
Kohnová et al., 2016; Gaál et al., 2016].

In [Papaioannou et al., 2016] the suitability of various copula families for a bivari-
ate analysis of peak discharges and flood volumes has been examined on streamflow
data from selected gauging stations along the whole Danube River. The method-
ology is applied to two different data samples: 1) annual maximum flood (AMF)
peaks combined with annual maximum flow volumes of fixed durations at 5 to 60
days, respectively (which can be regarded as a regime analysis of the dependence
between the extremes of both variables in a given year), and 2) annual maximum
flood (AMF) peaks with corresponding flood volumes (which is a typical choice for
engineering studies).

Finally, [Bacigál et al., 2016] focus on 3-dimensional copula models of returns of
US financial markets indices (various bond indices have been investigated in the lit-
erature much less than stock indices). Although, for our particular data (comprising
two triples of bond indices: US Investment Bond indices and US Corporate Bond in-
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dices), the global dominance of more traditional classes of elliptic (especially Student
type) 3-dimensional copulas was demonstrated (and some conclusions concerning op-
timizations of investment portfolios can be based on fairly simple arguments), the
optimal local Vine copulas helps to obtain more insight in the detailed development
of the investigated triples of investments.



Conclusion

We have shown copulas as a recent and complex mathematical tool for describ-
ing stochastic dependence in random vector, summarized their properties, ways of
constructions, software tools and some few applications. Since the research in this
area is still in its growth phase and there is a loud call for meaningful multivari-
ate models from applied sciences, we may expect that the focus in (theoretical)
scientific community will be put on construction of multidimensional yet flexible
copulas with well statistically interpretable structure and computationally feasible
estimation procedures available.
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copulas and applications to fitting problems
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Abstract: Several constructions of additive generators of binary Archimedean
copulas are introduced and discussed. Extension to general Archimedean copulas
is also included. Applications to fitting of copulas to real data are given and
examplified.
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1. Introduction

Copulas are an improtant tool in modelling dependence structure of multidimen-
sional random vectors. They have numerous applications in finance [6], hydrology
[2, 8] etc., see also a recent monograph [18].

Definition 1. For n ∈ N , n > 1, an n-dimensional copula is a mapping C : [0, 1]
n →

[0, 1] which is

i) grounded, i.e., C(x1, ..., xn) = 0 whenever 0 ∈ {x1, ..., xn} (0 is annihilator of
C);

ii) having neutral element 1, i.e., C(x1, ..., xn) = xi whenever all xj = 1 for
j 6= i;

iii) n-increasing, i.e., for all x, y ∈ [0, 1]
n
, x ≤ y, it holds

�

ε∈{−1,1}n

�
n�

i=1

εi

�
C(u

(ε1)
1 , ..., u(εn)

n ) ≥ 0

where u
(1)
i = yi and u

(−1)
i = xi.

The relationship of copulas and random vectors is clarified by Sklar theorem
[20].
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Theorem 1 (Sklar). Let V = (X1, ...Xn) be a random vector with marginal dis-
tributions FXi

: R → [0, 1], i = 1, ..., n, n ≥ 2. Then FV : Rn → [0, 1] is a joint
distribution function of V if and only if there is a copula C : [0, 1]

n → [0, 1] such
that for all (x1, ..., xn) ∈ Rn it holds

FV (x1, ..., xn) = C(FX1(x1), ..., FXn(xn)). (1)

Copula C is unique if and only if V is a continuous random vector.

More details about copulas can be found in Nelsen [15]. Sklar theorem allows to
examine rank-dependent characteristics of V directly on the corresponding copula
C (for example, rank correlation, i.e., Spearmann’s rho). Morewer, due to Sklar
theorem, fitting of multivariate distributions to real data can be split into two
steps:

i) fitting of marginal (1-dimensional) distributions

ii) fitting of (n-dimensional) copula.

A good fitting of copulas requires a rich backlog of possible candidates for copulas
modelling real data dependence structure.

In this paper, we will focus on Archimedean copulas and new construction meth-
ods for them. The paper is organised as follows. In the next section, Archimedean
copulas are introduced and discussed. Section 3 brings new construction meth-
ods for binary Archimedean copulas. In Section 4, new construction methods for
general Archimedean copulas are given. Section 5 is devoted to application of in-
troduced methods to the fitting of Archimedean copula to real data. Finally, some
concluding remarks are given.

2. Archimedean copulas

Among several classes of copulas, most popular copulas for fitting purposes are
Archimedean copulas, i.e., associative copulas with no non-trivial idempotent ele-
ments. Note that the classical definition of associativity was related to binary func-
tions, and then n-ary associative copulas were linked to binary copulas. New defini-
tion of associativity for n-ary functions [3] allows to introduce n-ary Archimedean
copulas straightforwardly.

Definition 2. An n-ary copula C : [0, 1]
n → [0, 1] is called Archimedean whenever

it is associative and it has no non-trivial idempotent elements, i.e., it satisfies:

i) C(C(x1, ..., xn), xn+1, ..., x2n−1) = C(x1, C(x2, ..., xn+1), xn+2, ..., x2n−1) =
· · · = C(x1, ..., xn−1, C(xn, ..., x2n−1)) for all x1, . . . , x2n−1 ∈ [0, 1];

ii) C(x, ..., x) < x for all x ∈ ]0, 1[.

In this paper we will deal with binary Archimedean copulas and general Archimedean
copulas.

2
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Definition 3. Let C : [0, 1]
2 → [0, 1] be a binary Archimedean copula. A mapping

C :
�

n≥2 [0, 1]
n → [0, 1] (we use the same notation as for the binary C, as there is no

confussion with this convention) given by C(x1, ..., xn) = C(x1, C(x2, ..., C(xn−1, xn) )
is called a general Archimedean copula whenever the restriction C| [0, 1]

n
is an n-

copula for all n ≥ 2.

Note that W : [0, 1]
2 → [0, 1], given by W (x1, x2) = max(0, x1 + x2 − 1), is the

weakest 2-copula. It is also Archimedean copula. However, its ternary extension,
given by W (x1, x2, x3) = max(0, x1 + x2 + x3 − 2), is not a 3-copula and thus W
is not a general Archimedean copula. On the other hand, the independence copula
Π:

�
n≥2 [0, 1]

n → [0, 1], given by

Π(x1, ...xn) =

n�

i=1

xi

is a general Archimedean copula. Due to results of Moynihan [14] based on the fact
that binary copulas are 1-Lipschitz triangular norms [12], the next representation
of Archimedean copulas is valid.

Theorem 2. A function C : [0, 1]
2 → [0, 1] is a binary Archimedean copula if and

only if there is a convex continuous strictly decreasing function f : [0, 1] → [0,∞]
satisfying f(1) = 0 so that for all x1, x2 ∈ [0, 1] it holds

C(x1, x2) = f−1
�
min(f(0), f(x1) + f(x2))

�
. (2)

Function f satisfying all requirements of Theorem 2 is called an additive gen-
erator (of copula C), and the set of all additive generators of binary copulas we
denote as F . Observe that, for a given binary Archimedean copula C, the cor-
responding additive generator is unique up to a positive multiplicative constant.
General Archimedean copulas were characterised by Kimberling [13].

Theorem 3. A maping C :
�

n≥2 [0, 1]
n → [0, 1] is a general Archimedean cop-

ula if and only if there is an absolutely monotone decreasing bijection g : [0,∞] →
[0, 1] (i.e., g has derivatives of any order m ∈ N in each point x ∈ ]0,∞[ and
sign g(m)(x) = (−1)m for each m ∈ N , x ∈ ]0,∞[ ) so that for any n ≥ 2,
x1, ..., xn ∈ [0, 1], it holds

C(x1, ..., xn) = g

�
n�

i=1

g−1(xi)

�
. (3)

For a general Archimedean copula C, the function g−1 is called a (general)
additive generator, and also it is unique up to a positive multiplicative constant.
The set of all absolutely monotone functions linked to general Archimedean cop-
ulas we denote as G. Note that the weakest general Archimedean copula is the
independence copula Π.

Example 1.

3
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i) Clayton family (CCl
λ )λ≥−1 of binary Archimedean copulas is determined by

the next additive generators:

fCl
λ (x) = 1 − x−λ if λ ∈ [−1, 0[,

fCl
0 (x) = − log x,

fCl
λ (x) = x−λ − 1 if λ ∈ ]0,∞[.

The weakest Clayton copula CCl
−1 = W is the weakest binary copula, while the

strongest (binary) copula M , M(x1, x2) = min(x1, x2), is the limit member of
Clayton family, limλ→∞ CCl

λ (x1, x2) = M(x1, x2). Moreover, CCl
0 = Π is the

independence copula, and CCl
1 , given by CCl

1 (x1, x2) = x1x2

x1+x2−x1x2
, whenever

(x1, c2) /∈ (0, 0), is also called Ali-Mikhail-Haq copula. In the language of tri-
angular norms, W is called Lukasiewicz t-norm, while CCl

1 is called Hamacher
product.

ii) Gumbel family (CG
λ )λ≥1 of binary Archimedean copulas is determined by the

additive generators fG
λ (x) = (− log x)λ, λ ∈ [1,∞[. Note that CG

1 = Π and
limλ→∞ CG

λ = M .

iii) Frank family (CF
p )p∈[−∞,∞[ of binary Archimedean copulas is determined by

the additive generators fF
−∞(x) = 1−x, fF

0 (x) = − log x, fF
p (x) = log e−p−1

e−px−1 ,

p ∈ ]−∞, 0[ ∪ ]0,∞[. Note that CF
−∞ = W , CF

0 = Π and limp→∞ CF
p = M .

Remark 1. Some of binary Archimedean copulas given in Example 1 are binary
forms of general Archimedean copulas. This is the case of Clayton’s copulas CCl

λ

for λ ≥ 0, of all Gumbel’s copulas, and of Frank copulas CF
p for p ≥ 0. Observe

that recently McNeil and Nešlehová [10] have shown that, for n ≥ 2, the n-ary
extension of CCl

−1
n−1

is the weakest Archimedean n-copula.

3. Construction methods for binary Archimedean
copulas

Due to Theorem 3, construction methods for binary Archimedean copulas are linked
to construction method for elements of the set F of all additive generators of binary
copulas. Two methods of construction of a new additive generator from a given
one are known from recent investigations.

Construction 1. [12] Let ϕ : [0, 1] → [0, 1] be a concave increasing bijection.
Then, for any additive generator f ∈ F , also f ◦ ϕ : [0, 1] → [0,∞], (f ◦ ϕ) (x) =
f(ϕ(x)), is an additive generator from F .

Note that some further generalisations of Construction 1 (ϕ need not be a bijec-
tion) can be found in Durante at al. [5, 4]. As a typical example, take ϕp : [0, 1] →
[0, 1] given by ϕp(x) = xp. Then ϕp is concave increasing bijection if and only if
p ∈ ]0, 1]. Take fW ∈ F , fW (x) = 1 − x. Then (fW ◦ ϕp)(x) = 1 − xp = fCl

−p,
i.e., Construction 1 applied to fW has resulted to a part of Clayton’s family, see
Example 1i).

4
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Construction 2. [12, 19] Let f ∈ F . Then for any λ ∈ [1,∞[, also fλ ∈ F .

Typical example of an application of Construction 2 is the Gumbel family.
Indeed, starting from f = fΠ ∈ F , f(x) = − log x, we have fG

λ = fλ, λ ∈ [1,∞[.
Surprisingly, several simple methods for constructing new additive generators

are missing in the literature. We propose three such new methods.

Construction 3. Let η : [0,∞] → [0,∞] be a convex increasing bijection. Then,
for any f ∈ F , also η ◦ f ∈ F .

Proof. Continuity of η ◦ f follows from the continuity of both η and f . Similarly,
increasingness of η and decreasingness of f ensures the decreasingness of η ◦ f .
Moreover, η(0) = 0 forces (η ◦ f)(1) = 0. Finally, both η and f are convex, and
then (η◦f)(λx+(1−λ)y) ≤ η(λf(x)+(1−λ)f(y)) ≤ λ (η◦f)(x)+(1−λ) (η◦f)(y)
for all x, y, λ ∈ [0, 1], where the first inequality follows from the increasingness of η
and convexity of f , while the second inequality is guaranteed by the convexity of
η.

Observe that the set N of all convex increasing bijections η : [0,∞] → [0,∞]
equipped with the composition of functions (as a binary operation of N ) is a
cancellative semigroup with neutral element η = id[0,∞].

Example 2.

i) The next functions are elements of the set N :

ηλ(x) = xλ, λ ∈ [1,∞[ (see Construction 2);

η(λ)
c (x) = (1 + cx)λ − 1, c ∈ ]0,∞[ , λ ∈ [1,∞[ ;

composite
�
η(λ)

c ◦ ηn

�
(x) = (1 + cxn)λ − 1.

ii) Take the additive generator ϕCl
ρ ∈ F , ρ ≥ −1. Then also η

(λ)
c ◦ ϕCl

ρ ∈ F for

any c ∈ ]0,∞[ and λ ∈ [1,∞[. For c = 1 and ρ > 0 it holds
�
η
(λ)
1 ◦ ϕCl

ρ

�
(x) =

x−ρλ − 1 = ϕCl
ρλ. However, for c 6= 1, Archimedean copulas generated by

η
(λ)
c ◦ ϕCl

ρ are not known in the literature.

The set F is a convex set, yielding one more construction method.

Construction 4. Let f1, ..., fk ∈ F be additive generators, and let c1, ..., ck ∈ [0, 1],�k
i=1 ci = 1. Then f =

�k
i=1 cifi ∈ F .

Proof. It is enough to observe that convex combinations of functions preserves
continuity, decreasingness, convexity, as well as fixed value in a given point, i.e.,
f(1) =

�k
i=1 cifi(1) = 0.

Example 3. Let f1, f2 ∈ F , f1 6= f2. Then the system (f(c))c∈[0,1] of functions
given by f(c) = cf1 + (1− c)f2 generates a parametric family (C(c))c∈[0,1] of binary
Archimedean copulas, with extremal elements C(0) generated by f1, and C(1) gen-

erated by f2. Put f1 = fCl
1 (i.e., f1(x) = 1

x − 1), and f2 = fCl
−1(i.e., f2(x) = 1 − x).

5
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Then f
(
(c)x) = c+(1−2c)x−(1−c)x2

x , c ∈ [0, 1], and the corresponding parametric sys-

tem (C(c))c∈[0,1] connects the Ali-Mikhail-Haq copula CCl
1 and the weakest copula

W .

Remark 2.

i) Example 3 shows how we can improve known methods for fitting Archimedean
copulas [8]. More details will be given in Section 5..

ii) It is well-known that (binary) copulas form a convex class. The problem when
a convex combination of Archimedean copulas is an Archimedean copula was
posed in [1] and it was particully solved in [16, 17]. Till now, no non-trivial
positive example is known. Obviously, convex sums of copulas and convex
sums of additive generators do not commute. Though this result (Construc-
tion 4) is trivial and most probably observed by many copula researchers, it
seems so that its explicit formulation as given in Construction 4 appears for
the first time in this paper. Similar is the case of Construction 5 which will
follow.

Formula (2) involves the pseudo-inverse f (−1) : [0,∞] → [0, 1] of an additive
generator f ∈ F , f (−1)(x) = f−1(min(f(0), x)). For more details about pseudo-
inverses we recommend [11]. It is not difficult to check that a function h : [0,∞] →
[0, 1] is a pseudo-inverse of some additive generator from f if and only if h is
non-increasing, strictly decreasing on [0, a] where a = inf{x ∈ [0,∞] |h(x) = 0},
continuous, convex and h(0) = 1. Observe that then f is the inverse function to
h|[0,a]. Similarly as it was possible to show the convexity of the class F , also the
class of all pseudo-inverses of additive generators from F is a convex class. This
fact proves the next result.

Construction 5. Let f1, ...fk ∈ F and c1, ..., ck ∈ [0, 1],
�k

i=1 ci = 1. Then f ∈ F ,

where f (−1) =
�k

i=1 cif
(−1)
i (i.e., pseudo-inverse of f is a convex combination of

pseudo-inverses of f1, ..., fk).

Example 4. Similarly as in Example 3 , for any f1, f2 ∈ F , f1 6= f2, we can
introduce a parametric family of binary Archimedean copulas (C[c])c∈[0,1] included

by additive generators (f[c])c∈[0,1] such that (f[c])
(−1) = cf

(−1)
1 + (1 − c)f

(−1)
2 .

Continuing Example 3, using the same f1 and f2, we have f
(−1)
[c] = c

1+x + (1 −
c) max(0, 1 − x), i.e., for c > 0,

f[c](x) =

�
c
x − 1 if x ∈ [0, c] ,√

(2−x)2−4c(1−x)−x

2(1−c) if x ∈ ]c, 1] .

4. Construction methods for general Archimedean
copulas

In the case of general Archimedean copulas, observe first that G−1 = {g−1|g ∈
G} � F .

6
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When checking construction methods given in Section 3., only Construction
method 4 and 5 can be applied straightforwardly also for general Archimedean
copulas. Indeed, this fact follows from the convexity of classes G and G−1.

Construction 1G. For any functions g1, ..., gk ∈ G and constants c1, ..., ck ∈ [0, 1],�k
i=1 ci = 1, also g =

�k
i=1 cigi ∈ G.

Construction 2G. For any functions g1, ..., gk ∈ G and constants c1, ..., ck ∈ [0, 1],�k
i=1 ci = 1, also g = (

�k
i=1 cig

−1
i )−1 ∈ G.

To examplify these two methods, it is enough to repeat Example 3 and 4 (and
replace W = CCl

−1 by Π = CCl
o , for example).

Construction 2 was a special case of Construction 3. In the case of general
Archimedean copulas, counterpart of Construction 2 is still valid, i.e., for each
g ∈ G also gλ ∈ G, where gλ(x) = g(x

1
λ ) and λ ≥ 1. We give now the counterpart

of Construction 3, which should by modified accordingly.

Construction 3G. Let τ : [0,∞] → [0,∞] be an increasing bijection which is an-
tiderivative to some absolutely monotone integrable function, i.e. τ has derivatives
of all orders on ]0,∞[ and sign τ (k)(x) = (−1)k+1 for all x ∈ ]0,∞[ and k ≥ 1.
Then for any g ∈ G, also g ◦ τ ∈ G.

Proof. It is enough to check the signs of derivatives of g ◦ τ .

Example 5.

i) It is evident that τ(x) = xp fulfils the requirements of Construction method
3G if and only if p ∈ ]0, 1], what yields the counterpart of Construction method
2 for general Archimedean copulas.

ii) For c > 0, λ ≥ 1, let τ(x) = (1+x)
1
λ −1

c . Then τ satisfies requirements of
Construction method 3G , and it is a counterpart of Example 2i).

iii) Define τ(x) = ex − 1. Then τ satisfies reguirements of Construction method
3G . For independence copula Π with additive generator ϕΠ(x) = − log x,
(τ ◦ϕΠ)(x) = 1

x − 1, i.e., we have obtained additive generator of Ali-Mikhail-
Haq copula CCl

1 .

iv) Define τ(x) = min(x, x+1
2 ). Then its inverse is given by τ−1(x) = max(x, 2x−

1) and it satisfies requirements of Construction method 3. Thus, for any
f ∈ F , τ−1 ◦ f ∈ F . However, τ does not fit Construction 3G , i.e., it cannot
be applied to construction of additive generators of general Archimedean
copulas. Indeed, take fCl

1 ∈ F , fCl
1 (x) = 1

x − 1.

Then g = (fCl
1 )−1 ∈ G. Define h = g ◦ τ ,

h(x) =

�
1
1 + x if x ∈ [0, 1] ,
2
3 + x if x ∈ [1,∞] ,

Then h /∈ G. To see this fact observe that f = h−1 ∈ F ,

f(x) =

�
2
x − 3 if x ∈

�
0, 1

2

�
,

1
x − 1 if x ∈

�
1
2 , 1
�
,
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is an additive generator of a binary copula but not of a ternary copula. Take
x = ( 5

7 , 5
7 , 5

7 ) and y = ( 6
7 , 6

7 , 6
7 ).

The left-hand side of the inequality (1) equals − 1
56 , it is negative, i.e., the

corresponding ternary function C is not 3-increasing and thus not a copula.

The next method is linked to Construction 1.

Construction 4G. Let ψ : [0, 1] → [0, 1] be an absolutely monotone bijection (i.e.,
all derivatives of ψ on ]0, 1[ exist and they are non-negative). Then for any g ∈ G,
also ψ ◦ g ∈ G.

Proof. Again it is enough to check the signs of derivatives of ϕ ◦ g

Remark 3.

i) Put Ψ(x) = x
3
2 . Then ψ does not satisfy the requirements of Construction

4G . However, for all g linked to general Archimedean copulas introduced in
Example 2 also g

3
2 ∈ G. An open problem arises. Are requirements on ψ

in Construction 4G also necessary? In particular, is there any g ∈ G so that
g

3
2 /∈ G?

ii) Any ψ satisfying requirements of Construcion 4G is a (possibly infinite) convex
sum of power functions, ψ(x) =

�∞
n=1 anxn, with an ≥ 0,

�∞
n=1 an = 1.

Then ψ ◦ g =
�∞

n=1 angn, i.e., Construction 4G can be seen as a corollary
of Construction 1G because of compactness of the class of general copulas,
and of the fact that for each g ∈ G, n ∈ N , also gn ∈ G (as a canequence of
Construction 4G.

5. Application to the fitting of copulas

For demonstrating the experiment we chose data of anual river flow peaks and their
corresponding volumes of flood waves [21], see Fig. 1.

Fig. 1 shows n = 114 pairs of data and its ranks divided by (n + 1), i.e., no
assumptions about marginal distributions was made. Three Archimedean families
was chosen for estimation and construction of pairwise convex combinations, par-
ticularly the so-called Clayton, Gumbel-Hougaard and Frank families. First we
estimated parameters for each of the three copulas, then - using the estimates - we
estimated weighting parameter (of convex combination) for every possible couple
of the above three Archimedean generators and their inverses, separately. Esti-
mation was performed by means of maximum pseudo-likelihood method [7] and
optimisation routines in R. Subsequently we checked goodnes of fit (GoF) by one
of the “blanket” tests [9] that measure distance between tested parametric copula
and so-called empirical copula. P-value of the GoF test had to be simulated by a
bootstrap method (with 5000 replications), which is computationaly the most time-
consuming procedure to do, otherwise all routines performs well even for larger sets
of data. The results are sumarized in Tab. 1, where we put the parameters esti-
mates and simulations of corresponding p-values of GoF test. The improvement
in performance is visible from the higher p-values since null hypothesis assumes
inadequacy of a model.
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a b

Fig. 1 Scatter plot of flow peaks (x,u) to flood volumes (y,v)
before (a) and after (b) probability integral transformation.

Tab. I Best copula parameters with simulated p-values of the GoF test

Copula Parameters GoF test
Gumbel 4.728 0.4432
Clayton 4.143 0.0125
Frank 18.385 0.3196
Generator
Clayton – Gumbel 0 0.4428
Clayton – Frank 1 0.0130
Frank – Gumbel 0.113 0.4915
Inverse of generator
Clayton – Gumbel 0 0.4399
Clayton – Frank 1 0.0118
Frank – Gumbel 0.128 0.4920

9
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All computations were performed in R, the open-source environment for statis-
tical computing and visualisation, the algorithms will be soon and freely available
on the author webpage www.math.sk/bacigal under the section “Research”.
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NON-EXCHANGEABLE RANDOM VARIABLES,
ARCHIMAX COPULAS AND THEIR FITTING
TO REAL DATA

Tomáš Bacigál, Vladiḿır Jágr and Radko Mesiar

The aim of this paper is to open a new way of modelling non-exchangeable random
variables with a class of Archimax copulas. We investigate a connection between pow-
ers of generators and dependence functions, and propose some construction methods for
dependence functions. Application to different hydrological data is given.

Keywords: Archimax copula, dependence function, generator

Classification: 93E12, 62A10

1. INTRODUCTION

In recent years copulas turned out to be a promising tool in multivariate modelling,
mostly with applications in actuarial sciences and hydrology.

In short, copula is a function which allows modelling dependence structure be-
tween stochastic variables. The main advantage is that the copula approach can split
the problem of constructing multivariate probability distributions into a part con-
taining the marginal one-dimensional distribution functions and a part containing
the dependence structure. These two parts can be studied and estimated separately
and then rejoined to form a joint distribution function.

Restricting ourselves to bivariate case, copula is a function C : [0, 1]
2 → [0, 1]

which satisfies the boundary conditions, C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) =
t for t ∈ [0, 1] (uniform margins), and the 2-increasing property, C(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0 for all u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]. Copula is symmetric if

C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]
2
and is asymmetric otherwise. By [a, b]

we mean a closed interval with endpoints a and b, while ]a, b[ will denote an open
interval.

There are several approaches how to model exchangeable random variables. Most
of them refer to Archimedean copulas [15], i. e., copulas Cϕ : [0, 1]

2 → [0, 1] express-
ible in the form

Cϕ(u, v) = ϕ(−1) (ϕ(u) + ϕ(v)) , (1)

where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing convex function satisfying
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ϕ(1) = 0, and its pseudo-inverse ϕ(−1) : [0,∞] → [0, 1] is given by

ϕ(−1)(x) = ϕ−1 (min(ϕ(0), x)) . (2)

Among several approaches allowing to fit copulas to real data we recall [5] and
references therein.

The aim of this paper is to open a new way of modelling non-exchangeable random
variables which are related to asymmetric copulas. In the next section we recall
Archimax copulas, a special class of copulas which are non-symmetric, in general.
After some new theoretical results about the structure of Archimax copulas, in
Section 3 we propose new construction methods for one part of this class of copulas.
Section 4 gives a short overview of estimation methods used in the application to
modelling hydrological data in Section 5.

2. ARCHIMAX COPULAS

Since there are much more cases in the nature when we feel the causality among
stochastic processes flows in certain direction rather than the cases when we observe
random variables equally affected by common underlying process, we find symmetry
of the most used copulas quite restrictive. Among few classes of asymmetric copulas,
convenient enough to model non-exchangeable random variables, we focus on the
class of Archimax copulas [2] built up from a convex continuous decreasing function
ϕ : [0, 1] → [0,∞], ϕ(1) = 0, called generator and a convex function A : [0, 1] → [0, 1],
max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1], called dependence function. Then the
corresponding Archimax copula is given by

Cϕ,A(u, v) = ϕ(−1)

[
(ϕ(u) + ϕ(v))A

(
ϕ(u)

ϕ(u) + ϕ(v)

)]
for all u, v ∈ [0, 1] (3)

(with conventions 0/0 = ∞/∞ = 0, where ϕ(−1) is given by (2)). Observe that
Archimax copulas contains as special subclasses all Archimedean copulas (then A ≡
A∗ = 1) and all extreme value copulas [16], in short EV copulas (then ϕ(t) =
− log(t)). For the weakest dependence function A = A∗,

A∗(t) = max(t, 1− t),

we have Cϕ,A∗ = M , the strongest copula of co-monotone dependence, independently
of the generator ϕ.

Moreover, it is easy to check that an Archimax copula Cϕ,A is symmetric if and
only if A(t) = A(1 − t) for all t ∈ [0, 1] (i. e., A is symmetric wrt. axis x = 1/2).
Recent results on measuring asymmetry can be found in [4].

Suppose that ϕ is a generator of a copula Cϕ. Then also ϕλ, λ > 1, is a generator
of a copula Cϕλ . As an example recall the Gumbel family of copulas

(
CG

(λ)

)
λ∈[1,∞[

,

generated by generators ϕG
(λ) : [0, 1] → [0,∞], ϕG

(λ)(x) = (− log x)λ, which bears

from the product copula Π generated by ϕG
(1).

Proposition 2.1. Let ϕ : [0, 1] → [0,∞] be a generator of a copula Cϕ. For
any dependence function A, and any λ ≥ 1, the Archimax copula Cϕλ,A is also
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an Archimax copula based on generator ϕ, i. e., Cϕλ,A = Cϕ,B(A,λ)
, where B(A,λ) :

[0, 1] → [0, 1] is a dependence function given by

B(A,λ) = A(λ)(t)

[
A

((
t

A(λ)(t)

)λ
)]1/λ

, (4)

with A(λ) : [0, 1] → [0, 1], A(λ)(t) =
(
tλ + (1− t)λ

)1/λ
.

P r o o f . Formula (4) is a matter of processing of the equality Cϕλ,A = Cϕ,B(A,λ)
.

Indeed,

Cϕλ,A(u, v) = ϕ(−1)

([
(ϕλ(u) + ϕλ(v))A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ)

= ϕ(−1)


(ϕ(u) + ϕ(v))

[
φλ(u) + φλ(v)

(φ(u) + φ(v))
λ
A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ
 ,

while

Cϕλ,B(A,λ)(u, v)

= ϕ(−1)


(ϕ(u) + ϕ(v))

[(
φ(u)

φ(u) + φ(v)

)λ

+

(
φ(v)

φ(u) + φ(v)

)λ
]1/λ

A




(
φ(u)

φ(u)+φ(v)

)λ

(
φ(u)

φ(u)+φ(v)

)λ
+
(

φ(v)
φ(u)+φ(v)

)λ







= ϕ(−1)


(ϕ(u) + ϕ(v))

[
φλ(u) + φλ(v)

(φ(u) + φ(v))
λ
A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ
 .

To see that B(A,λ) is indeed a dependence function, note that based on Gumbel
family, we have also CϕG

(λ)
,A = CϕG

(1)
,B(A,λ)

. Due to [2], CϕG
(λ)

,A is a copula. Moreover,

for any power p ∈]0,∞[,

CϕG
(λ)

,A(u
p, vp)

= exp

(
−
[(
(− log up)λ + (− log vp)λ

)
A

(
(− log up)λ

(− log up)λ + (− log vp)λ

)]1/λ)

= exp

(
−p

[(
(− log u)λ + (− log v)λ

)
A

(
(− log u)λ

(− log u)λ + (− log v)λ

)]1/λ)

=
(
CϕG

(λ)
,A(u, v)

)p
,
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i. e., CϕG
(λ)

,A is an EV-copula [15, 16]. Due to representation of EV-copulas, there is

a dependence function B : [0, 1] → [0, 1] such that

CϕG
(λ)

,A = CϕG
(1)

,B

and evidently B = BA,λ. �

Dependence functions A(λ), λ ∈ [0, 1], are called Gumbel dependence functions
due to the fact that CG

(λ) = CϕG
(1)

,A(λ)
. Observe that the Archimedean copula Cϕλ

is just an Archimax copula based on ϕ and A(λ), Cϕλ = Cϕ,A(λ)
, independently

of the generator ϕ. Proposition 2.1 has an important impact for the structure of
Archimax copulas. For any generator ϕ : [0, 1] → [0,∞], classes Aϕλ of Archimax
copulas based on generators ϕλ, λ ∈ [1,∞[, are nested, and Aϕλ $ Aϕµ whenever
1 ≤ µ < λ ≤ ∞, where Aϕ∞ =

⋂∞
λ=1 Aϕλ = {M}. Therefore it is important to know

the basic form η of each generator ϕ, ϕ = ηλ with λ ≥ 1, where η : [0, 1] → [0,∞]
is a generator such that for any λ ∈]0, 1[, ηλ is no more convex. Such generators
η will be called basic generators and they correspond to Archimedean copulas Cη

such that for any p > 1, the corresponding Lp-norm ‖Cη‖p > 1 (for more details we
recommend [3, 14]).

Proposition 2.2. Let ϕ : [0, 1] → [0,∞] be a generator. Let

α = inf
{ϕ(x)ϕ′′(x)

(ϕ′(x))2
∣∣ x ∈]0, 1[and ϕ′(x), ϕ′′(x) exist

}
.

Then

η = ϕ1/p, where p =
1

1− α
,

is a basic generator.

P r o o f . The convexity of a generator ϕ(η) is equivalent to the non-negativity of
the derivatives ϕ′′(η′′) in all points where they exist. Let ϕ = ηp, p ≥ 1, where η is
a basic generator. Then η = ϕ1/p, η′ = 1

pϕ
1/p−1ϕ′ and

η′′ =
1

p

(
1

p
− 1

)
ϕ

1
p−2(ϕ′)2 +

1

p
ϕ

1
p−1ϕ′′

=
1

p
ϕ

1
p−2

((
1

p
− 1

)
(ϕ′)2 + ϕ′ϕ′′

)
≥ 0

if and only if α ≤ ϕϕ′′/(ϕ′)2, where α = 1 − 1/p, where the last inequality should
be satisfied in each point from ]0, 1[ where ϕ′ and ϕ′′ exist. The result follows. �

Based on Propositions 2.1 and 2.2, we propose to fit Archimax copulas based on
basic generators η only. Thus before choosing the appropriate candidates for fitting
of a generator, one should check their basic forms. The next lemma gives a sufficient
condition for a generator η to be basic.
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Lemma 2.3. Let η : [0, 1] → [0,∞] be a generator and let η′(1−) 6= 0. Then η is a
basic generator.

P r o o f . Due to continuity of η and η(1) = 0, if η′(1−) 6= 0 then α = inf
{

η(x)η′′(x)
(η′(x))2

∣∣

x ∈]0, 1[ and η′(x), η′′(x) exist
}
= 0 and thus p = 1. �

Example 2.4.

(i) For each Gumbel generator ϕG
(λ), the corresponding basic generator is η = ϕG

(1)

(the generator of the product copula).

(ii) The weakest copula C(p) which has minimal Lp-norm, ‖C(p)‖p = 1, p ∈ [1,∞[,
is an Archimedean copula generated by a generator ϕY

(p) : [0, 1] → [0,∞],

ϕY
(p)(x) = (1 − x)p (Y stands for Yager family, see [18], more details on Lp-

norms and copulas can be found in [3]). Again, for any p ∈ [1,∞[, the corre-
sponding basic generator η = ϕY

(1) is unique (generator of the lower Frechet-

Hoeffding bound W ).

(iii) Based on Lemma 2.3 one can quickly check that the families of Clayton, Frank,
Ali–Mikhail–Haq (see [10, 15]), are generated by basic generators only.

(iv) Taking generators from some two-parameter families given in [10], one may
easily verify that

— BB1 generator ϕ(t) = (t−a − 1)b with a > 0, b ≥ 1 gains its basic form
only for b = 1, while BB3 with ϕ(t) = eb(− log t)a −1 and a ≥ 1, b > 0 only
for a = 1. Then, both would result in strict Clayton copula;

— BB2 generator ϕ(t) = eb(t
−a−1) − 1 with a > 0, b > 0 is basic for any a, b;

— BB6 generator ϕ(t) =
[
− log(1− (1− t)a)

]b
with a ≥ 1, b > 0 reduces to

basic form if b = 1/a;

— each BB7 generator ϕ(t) =
[(
1− (1− t)a

)−b − 1
]1/a

with a ≥ 1, b > 0 is
a basic generator.

3. SOME CONSTRUCTION METHODS FOR DEPENDENCE FUNCTIONS

Based on some known dependence functions, it is desirable to be able to construct
new dependence functions to increase the fitting potential of our Archimax copulas
buffer. Recall that for dependence functions A1, . . . , An also their convex sum A =∑n

i=1 λiAi (with
∑n

i=1 λi = 1) is a dependence function. Inspired by the bivariate
construction [11] and based on the recent results [13], consider dependence functions

A1, . . . , An. Then the corresponding EV copulas CA1 , . . . , CAn : [0, 1]
2 → [0, 1] are

given by

CAi
(u, v) = exp

(
(log u+ log v)Ai

(
log u

log u+ log v

))
. (5)
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Take arbitrary two probability vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]
n
,
∑n

i=1 ai =∑n
i=1 bi = 1. Then due to [13] the function C : [0, 1]

2 → [0, 1] given by

C(u, v) =

n∏

i=1

Ci

(
uai , vbi

)
(6)

is also a copula. Note that EV copulas are characterized by the power stability
C
(
uλ, vλ

)
= (C(u, v))

λ
for any λ ∈]0,∞[, u, v ∈ [0, 1]. It is then easy to see that C

given by (6) is also an EV copula, and thus there is a dependence function A so that
C = CA. For processing purposes, denote t = log u

log u+log v . Then log v = 1−t
t log u and

log u+ log v = log u
t . Moreover,

C(u, v) = exp

(
(log u+ log v)A

(
log u

log u+ log v

))
= exp

(
log u

t
A(t)

)
. (7)

On the other hand, due to (6),

C(u, v) =
n∏

i=1

exp

((
ai log u+ bi

1− t

t
log u

)
Ai

(
ai log u

ai log u+ bi
1−t
t log u

))

= exp

(
log u

t

n∑

i=1

(tai + (1− t)bi)Ai

(
tai

tai + (1− t)bi

))
. (8)

Comparing (7) and (8), we see that

A(t) =
n∑

i=1

(tai + (1− t)bi)Ai

(
tai

tai + (1− t)bi

)
. (9)

What was just shown is the following construction method.

Proposition 3.1. Let A1, . . . , An be dependence functions. Then for any proba-
bility vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]

n
, also the function A : [0, 1] → [0, 1]

given by (9) is a dependence function.

Observe that the formula (9) can be deduced by induction from the original
formula given in [11], as well as seen as extension of Proposition 3 of [9] dealing with

A1, A2 and α, β ∈ [0, 1]. Then the function A : [0, 1]
2 → [0, 1] given by

A(t) = (αt+ β(1− t))A1

(
αt

αt+ β(1− t)

)

+ ((1− α)t+ (1− β)(1− t))A2

(
(1− α)t

(1− α)t+ (1− β)(1− t)

)

is a dependence function. Moreover, if (a1, . . . , an) = (b1, . . . , bn), then the formula
(9) turns into the standard convex sum A(t) =

∑n
i=1 aiAi(t). Evidently, this method

allows to introduce asymmetric Archimax copulas even if starting from symmetric
Archimax copulas.
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Example 3.2. Consider dependence functions A1, A2. Let A2 = A(2), see (4),
a1 = a2 = 1/2, b1 = 0, b2 = 1. Then the dependence function A given by (9) does
not depend on A1, and it holds

A(t) =
t

2
+

(2− t)

2
A2

(
t

2− t

)
=

t

2
+

√(
t

2

)2

+ (1− t)2.

Observe that A(1/3) = (1+
√
17)/6 = 0.85385 and A(2/3) = (1+

√
2)/3 = 0.80474,

proving the asymmetry of any relevant Archimax copula Cφ,A (recall that Cφ,A is
symmetric if and only if A(t) = A(1− t) for all t ∈ [0, 1]).

Inspired by [1] where construction methods for generators of Archimedean copulas
were discussed, we propose one more new construction method for dependence func-
tion. For a dependence function A, denote by B a [0, 1] → [0, 1] function given by
B(t) = A(t)−1+t. Each such B is characterized by its convexity, non-decreasingness
and boundary conditions

max(0, 2t− 1) ≤ B(t) ≤ t.

The pseudo-inverse B(−1) : [0, 1] → [0, 1] of B is given by

B(−1)(u) = sup{t ∈ [0, 1] |B(t) ≤ u},
and it is characterized by concavity, non-decreasingness and boundary conditions

u ≤ B(−1)(u) ≤ u+ 1

2
. (10)

Consider dependence functions A1, . . . , An and related functions B
(−1)
1 , . . . , B

(−1)
n .

Then the convex combination
∑n

i=1 λiB
(−1)
i is concave, non-decreasing and satisfy

the boundary conditions (10), and thus there is a dependence function A such that

its related function B(−1) is just equal to
∑n

i=1 λiB
(−1)
i . This fact proves our next

construction method.

Proposition 3.3. Let A1, . . . , An be dependence functions and let (λ1, . . . , λn) ∈
[0, 1]

n
be a probability vector. Then the function A : [0, 1] → [0, 1] given by

A(t) =

(
n∑

i=1

λiB
(−1)
i

)(−1)

(t) + 1− t (11)

is a dependence function.

Example 3.4. Consider the extremal dependence functions A1 = A∗ and A2 =
A∗ = 1. Then B1(t) = max(0, 2t − 1) = B∗(t) and B2(t) = t = B∗(t). Moreover,

B
(−1)
1 (u) = u+1

2 and B
(−1)
2 (u) = u. For a fixed λ ∈ [0, 1],(

λB
(−1)
1 + (1 − λ)B

(−1)
2

)
(u) =

(
1 − λ

2

)
(u) + λ

2 = B
(−1)
λ (u), and thus Bλ(t) =(

B
(−1)
λ

)(−1)
(t) = max

(
0, 2t−λ

2−λ

)
and Aλ(t) = Bλ(t) + 1 − t = max

(
1 − t, 2−2λ+λt

2−λ

)
.

Note that both A1 and A2 are symmetric (wrt. axis x = 1/2), but not Aλ for any
λ ∈

]
0, 1
[
.
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4. ESTIMATION METHOD

Basically there are two main methods recently used for estimating one-parameter
families. One uses various measures of dependence, such as Kendall’s tau through
formal relation with copula parameter θ, the another is based on maximization of a
likelihood function [8]. For general multi-parameter copulas (not e. g. multivariate
normal or pair-copulas) the first method is problematic and to our best knowledge
no satisfactory study has been presented so far. Given a sample of n-dimensional
random vectors X1, . . . ,Xm, here we use pseudo-loglikelihood function

L(θ) =
m∑

i=1

log
(
cθ
(
F1(X1,i), . . . , Fn(Xn,i)

))

employing copula density cθ (which is n-order mixed derivative with respect to all
variables) with vector parameter θ and marginal empirical distribution functions

Fj(x) =
1

m+ 1

m∑

i=1

1(Xi,j ≤ x), j = 1, . . . , n,

where 1(·) is the indicator function which yields 1 whenever · is true and 0 oth-
erwise. The marginal empirical distribution functions transform Xi into pseudo-
observations U i, i = 1, . . . ,m. Goodness of fit can be checked by comparing (L2-
norm) squared distances

Sn =
m∑

i=1

(Cn(Ui,1, . . . , Ui,n)− Cθ(Ui,1, . . . , Ui,n))
2

between estimated parametric copulas Cθ and empirical copula function

Cn(u1, . . . , un) =
1

m

m∑

i=1

1(Ui,1 ≤ u1, . . . , Ui,n ≤ un), (u1, . . . , un) ∈ [0, 1]
n
.

However because of computational intensity of simulation related to bootstrap method,
we do not perform GOF test [7] here (unless one would be interested in classifying
copulas according to their competence to describe particular data). Instead, for
comparison purposes we employ model selection criterion, in particular the Bayesian
information criterion defined

BIC = −2L(θ) + k log(m)

where k denotes number of parameters. The model preference grows with decreasing
BIC.

5. APPLICATION

To examine performance of new models we consider two kinds of bivariate (n = 2)
hydrological data. One is constituted by monthly average flow rate of two rivers
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– Danube at Nagymaros (Hungary) {Xi,1}, i = 1, . . .m, and Inn measured at
Schärding (Austria) {Xi,2} (Inn is tributary to Danube, Nagymaros lies about 570
km downstream) comprising m = 660 realisations recorded for 55 years until 1991,
see [17]. Another sequence of m = 113 entries comes from annual summer term
maxima of the Vltava river (Bohemia) flow rate {Xi,1} (measured above the dam
Kamyk until 2007) with corresponding flood volume {Xi,2}, which is total amount
of water run within 8 days starting three days before the corresponding flow rate
peak.

Due to temporal manner of the monthly river discharge, the data were found
not being i.i.d. After filtering the lowest frequencies, seasonal component and ap-
plying AR(1) model, the residuals were tested by Ljung-Box test and test of serial
independence (based on copulas and proposed by [6]) with positive result.

Both bivariate data transformed to unit square are shown in Figure 1.
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Fig. 1. Scatter plot of data after transformation by its marginal

empirical distribution function.

Tables 2 and 3 summarize competition of new construction methods alongside
well-established models (for overview see Table 1, [10, 15]) and related construction
methods [1]. Besides parameters and maximized value of log-likelihood function we
provide the corresponding estimation time and BIC criterion. Parameters were found
by box-constrained optimisation (method L-BFGS-B implemented in R) which, if
failed to find global maximum, was helped by pre-search over a grid. This happens
mostly with more-parameter piece-wise construction of dependence function such as
LPL. Parameters other than bounded by unit interval were rounded to one decimal
place. Values in parentheses are fixed during estimation, square brackets indicate
construction method of dependence function, in particular [bi] denotes biconvex
combination given by Proposition 3.1 for n = 2, [li] represents special case of [bi]
when ai = bi (i = 1, 2), and [inv] refers to Proposition 3.3. So far we implemented
construction procedures for two dependence functions only and their individual pa-
rameters are estimated separately (in advance) from weighting parameters of their
combination.
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family generator ϕθ(t) parameter range limiting case (Archimed.)

Gumbel (− log(t))θ1 [1,∞] {1} Π, {∞} M

Clayton t−θ1 − 1 ]0,∞] {0} Π, {∞} M

Frank − log
“

e−θ1t−1

e−θ1−1

”
< {−∞} W , {0} Π, {∞} M

Joe − log
“
1 − (1 − t)θ1

”
[1,∞] {1} Π, {∞} M

BB1 (t−θ1 − 1)θ2 ]0,∞] × [1,∞] {0, 1} Π, {∞,∞} M
dependence function Aθ(t) limiting case (EV)

Mixed θ1t
2 − θ1t + 1 [0, 1] {0} Π

Gumbel
(logistic)

“
tθ1 + (1 − t)θ1

”1/θ1
[1,∞] {1} Π, {∞} M

Hüsler Reiss t ∗ Φ
“

1
θ1

+
θ1

2 log(t/(1−t))

”
+ [0,∞] {1} Π, {∞} M

+(1 − t)Φ
“

1
θ1

− θ1
2 log(t/(1−t))

”
Φ is CDF of standard normal

Tawn
(asymmetric
logistic)

1 − θ2 + (θ2 − θ1)t + [0, 1]×
[0, 1]×
[0,∞]

{0, 0, 1} Π, {1, 1,∞} M

+
“
(θ1t)

θ3 + (θ2(1 − t))θ3
” 1

θ3

LPL
(linear-
parabolic-
linear)

8><>:
1 − 1−b

a t t ≤ a − c
b−a
1−a + 1−b

1−a t t ≥ a + c

At2 + Bt + C otherwise

[0, 1]×
[0, 1]×
[0, 1]

{0, ., .} {1, ., .} {., 1, .} Π

A =
(1−b)

4(1−a)ac
{0.5, 0, 0} M

B =
2(1−b)(2ac−a−c)

4(1−a)ac

C =
2(1+b)ac+(1−b)c2−(b+4c−1)a2

4(1−a)ac

a = θ1, c = θ3 min(a, 1 − a)
b = max(a, 1 − a)(1 − θ2) + θ2

Table 1. Overview of parametric families used to construct

Archimax copula.

All procedures are implemented in R and freely available1.

6. CONCLUSION

As seen from our results, given the two different data sets, the newly proposed
construction methods do not give significantly better fit according to the selection
criterion (which penalizes inclusion of additional parameters), however in case of
dependence functions with roughly equal fitting performance they elevate the max-
imized likelihood. Note that the best results for fixed number of parameters are
given by Archimax construction with both generator and dependence function, from
which we may judge that the majority of well-established models in Archimedean
and EV class capture mutually different dependence structure, in other words, they
complement one another. The few exceptions that follow from Proposition 2.1 are
equivalences of Archimedean copula with Gumbel generator and EV copula with
Gumbel dependence function, or equivalence of BB1 and Archimax copula with
Clayton generator and Gumbel dependence function.

In our software actually the estimation of Archimedean part is generally faster
which may evoke a demand for some alternative to Proposition 2.1 in reverse order.

1www.math.sk/wiki/bacigal
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generator dependence function log-lik time criterion
family par. family par. L(θ) [sec] BIC

Gumbel 2.1 278.1 3 -549.8
Clayton 1.2 162.3 2 -318.1
Frank 6.6 255.2 3 -504.0
Joe 2.6 249.2 3 -492.0
BB1 0.1 2.1 278.5 11 -544.0

Mixed 1.00 254.2 5 -502.0
Gumbel 2.1 278.1 16 -549.8
HüslerReiss 1.9 272.0 78 -537.7
LL 0.56 0.70 (0.05) 66.9 1905 -120.9
LPL sym. (0.50) 0.05 0.80 274.0 1540 -528.5
LPL 0.50 0.05 0.80 274.0 3122 -528.5
Tawn 0.92 1.00 2.3 281.9 328 -544.3

Gumbel 2.1 Mixed 0.00 278.1 42 -543.3
Gumbel 1.5 Gumbel 1.5 278.1 36 -543.3
Gumbel 2.1 HüslerReiss 0.2 278.1 410 -543.3
Clayton 0.3 Mixed 1.00 269.1 84 -525.3
Clayton 0.1 Gumbel 2.1 278.5 55 -544.0
Clayton 0.9 HüslerReiss 1.8 272.9 190 -532.9
Frank 2.3 Mixed 0.97 280.8 86 -548.5
Frank 1.4 Gumbel 1.9 280.2 85 -547.4
Frank 1.8 HüslerReiss 1.5 276.1 255 -539.2
Joe 1.4 Mixed 0.98 273.9 81 -534.8
Joe 1.0 Gumbel 2.1 272.0 70 -531.2
Joe 1.0 HüslerReiss 1.9 272.1 348 -531.2
BB1 0.1 2.1 Mixed 0.00 278.5 71 -537.5
BB1 0.1 1.4 Gumbel 1.4 278.5 78 -537.5
BB1 0.1 2.1 HüslerReiss 0.1 278.5 40 -537.5

Gum–Cla 0.99 279.0 95 -538.5
Gum–Fra 0.46 278.7 53 -537.9
Gum–Joe 1.00 278.1 14 -536.7
Cla–Fra 0.00 256.2 335 -492.9
Cla–Joe 0.01 263.8 188 -508.1
Fra–Joe 0.74 271.8 64 -524.1
BB1–Gum 1.00 278.5 43 -537.5
BB1–Cla 1.00 278.5 14 -537.5
BB1–Fra 1.00 278.8 440 -537.5
BB1–Joe 1.00 278.5 16 -538.1

[li] Mix–Gum 0.00 278.1 29 -536.7
[inv] 0.00 278.1 322 -536.7
[bi] 0.05 0.00 280.8 364 535.6
[li] Mix–Hüs 0.10 276.3 314 -533.1
[inv] 0.00 272.6 2049 -525.7
[bi] 0.05 0.00 281.1 687 536.2
[li] Gum–Hüs 0.71 278.5 125 -537.5
[inv] 1.00 278.1 624 -536.7
[bi] 0.92 0.99 279.2 1059 -532.4

Table 2. Estimation summary for 2 rivers flow rate. Families

denoted by [bi] and [li] (special case with ai = bi) refers to new

construction method from Proposition 3.1 while [inv] to

Proposition 3.3.
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generator dependence function log-lik GOF
family par. family par. L(θ) Sn

Gumbel 4.8 128.4 -252.1
Clayton 4.5 94.0 -183.3
Frank 18.4 123.9 -243.1
Joe 6.2 112.1 -219.5
BB1 0.3 4.3 129.5 -249.5

Mixed 1.00 66.5 -128.3
Gumbel 4.8 128.4 -252.1
HüslerReiss 5.0 128.7 -252.7
LL 0.50 0.50 (0.05) 57.3 -105.2
LPL sym. (0.50) 0.00 0.50 112.4 -215.3
LPL 0.50 0.00 0.50 112.4 -210.6
Tawn 1.00 1.00 4.8 128.4 -242.6

Gumbel 2.8 Mixed 1.00 128.6 -247.8
Gumbel 2.2 Gumbel 2.2 128.4 -247.2
Gumbel 3.1 HüslerReiss 1.3 128.9 -248.3
Clayton 2.0 Mixed 1.00 108.5 -207.5
Clayton 0.3 Gumbel 4.3 129.5 -249.6
Clayton 0.3 HüslerReiss 4.5 129.9 -250.5
Frank 10.0 Mixed 1.00 128.5 -247.6
Frank 4.0 Gumbel 3.2 131.3 -253.1
Frank 4.0 HüslerReiss 3.2 131.9 -254.4
Joe 3.4 Mixed 1.00 117.7 -225.9
Joe 1.0 Gumbel 4.8 128.4 -247.4
Joe 1.0 HüslerReiss 5.0 128.7 -247.9
BB1 0.3 2.5 Mixed 1.00 129.8 -245.4
BB1 0.3 1.7 Gumbel 2.5 129.5 -244.8
BB1 0.2 2.2 HüslerReiss 1.7 130.0 -245.8

Gum–Cla 1.00 128.4 -242.6
Gum–Fra 1.00 128.4 -242.6
Gum–Joe 1.00 128.4 -242.6
Cla–Fra 0.00 106.0 -197.8
Cla–Joe 0.00 112.1 -210.0
Fra–Joe 0.00 112.1 -210.0
BB1–Gum 1.00 129.4 -244.6

[li] Mix–Gum 0.00 128.4 -242.6
[inv] 0.00 128.4 -242.6
[bi] 0.00 0.00 128.4 -237.9
[li] Mix–Hüs 0.00 128.7 -243.2
[inv] 0.00 128.7 -243.2
[bi] 0.00 0.00 128.7 -238.5
[li] Gum–Hüs 0.22 128.7 -243.2
[inv] 0.26 128.6 -243.4
[bi] 0.86 0.92 129.7 -240.5

Table 3. Estimation summary for summer flood data.
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[1] T. Bacigál, M. Juráňová, and R. Mesiar: On some new constructions of Archimedean
copulas and applications to fitting problems. Neural Network World 1 (2010), 10,
81–90.
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Abstract

In this study, we discuss additive generators of copulas with a fixed dimension n ≥ 2 and additive generators that yield copulas 
for any dimension n ≥ 2. We review the reported methods used to construct additive generators of copulas, and we introduce and 
exemplify some new construction methods.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Additive generator; Archimedean copula; Copula; Joint distribution function

1. Introduction

Since their introduction by Sklar in [24], copulas have become an important tool for modeling the stochastic depen-
dence of random vectors and thus the modeling of real data, which can be viewed as outcomes of some n-dimensional 
random experiment, n ≥ 2. Thus, copulas can be considered to be basic tools in statistics, but also in related sci-
ences, including economics, information sciences, and sociology. We recall that copulas aggregate one-dimensional 
marginal distribution functions into n-dimensional joint distribution functions. As a typical example, we recall the case 
of independent random variables where the stochastic dependence is captured by the product copula Π and the joint 
distribution function is simply the product of the corresponding continuous marginal one-dimensional distribution 
functions.

From an axiomatic viewpoint, a function C: [0, 1]n → [0, 1] is called a (n-dimensional) copula whenever it satisfies 
the boundary conditions (C1) and it is an n-increasing function (C2), as follows.

(C1) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn}, i.e., 0 is an annihilator of C, and C(x1, . . . , xn) = xi whenever 
xj = 1 for each j �= i (i.e., 1 is a neutral element of C),

* Corresponding author.
E-mail addresses: tomas.bacigal@stuba.sk (T. Bacigál), vnajjari@gazi.edu.tr (V. Najjari), radko.mesiar@stuba.sk (R. Mesiar), 
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(C2) For any x, y ∈ [0, 1]n, x ≤ y (i.e., x1 ≤ y1, . . . , xn ≤ yn), it holds that

VC

([x,y]) =
∑

ε∈{−1,1}n

(
C(zε)

n∏
i=1

εi

)
≥ 0,

where zε = (z
ε1
1 , . . . , zεn

n ), z1
i = yi , z

−1
i = xi .

Note that VC([x, y]) is called the C-volume of the rectangle [x, y].
As mentioned earlier, the main interest in copulas is due to Sklar’s theorem [24]: for a random vector Z =

(X1, . . . , Xn), FZ: Rn → [0, 1] is a joint distribution of Z if and only if there is a copula C: [0, 1]n → [0, 1] such 
that

FZ(x1, . . . , xn) = C
(
FX1(x1), . . . ,FXn(xn)

)
, (1)

where FXi
: R → [0, 1] is a distribution function related to the random variable Xi , i = 1, . . . , n. The copula C in (1)

is unique whenever the random variables are continuous. For more details of copulas, we recommend [11] and [21].
A highly prominent class of binary copulas is the class of Archimedean copulas characterized by the associativity 

of C and the diagonal inequality C(x, x) < x for all x ∈ ]0, 1[. Note that although Archimedean copulas are nec-
essarily symmetric, i.e., they can model the stochastic dependence of exchangeable random variables (X, Y) only, 
they comprise most of the copula families employed in financial, hydrological, and other application areas. For fitting 
purposes, these copulas are used in most of the software systems that deal with copulas, such as [1,9,28,29]. The 
popularity of Archimedean copulas is explained by their representation using one-dimensional functions, which are 
generally called additive generators of (binary) copulas. This crucial result is attributed to Moynihan [20].

Theorem 1. A function C: [0, 1]2 → [0, 1] is an Archimedean copula if and only if there is a convex strictly decreasing 
function f : [0, 1] → [0, ∞], f (1) = 0, such that

C(x, y) = f (−1)
(
f (x) + f (y)

)
, (2)

where the pseudo-inverse f (−1): [0, ∞] → [0, 1] is given by

f (−1)(u) = f −1(min
(
u,f (0)

))
.

The function f is called an additive generator of the copula C and it is unique up to a positive multiplicative constant.
We denote F2 as the class of all additive generators of the binary copulas characterized in the theorem above. Many 

families of these generators can be found in numerous previous studies, such as [11,13,21]. Several studies have been 
devoted to methods for constructing additive generators, which we review in Section 3. We also recall an important 
link between additive generators of copulas and positive distance functions based on the Williamson transform, as 
observed and discussed by McNeil and Nešlehová in [17].

However, copulas of higher dimensions can also be generated using additive generators. Thus, previous studies 
inspired us to review the known details for additive generators of copulas and to introduce some new methods for 
generating them. This paper is organized as follows. In the next section, we summarize known results for additive 
generators of n-ary copulas (copulas of any dimension). In Section 3, we review some previously reported methods for 
constructing additive generators of copulas and we also propose a new construction method based on the Williamson 
transform (see [17]). Section 4 proposes some new construction methods and we present examples. Finally, we provide 
some concluding remarks.

2. Additive generators of copulas

For any binary Archimedean copula C: [0, 1]2 → [0, 1] generated by an additive generator f : [0, 1] → [0, ∞], C is 
also a triangular norm [13,20,23] and thus it can be extended univocally to an n-ary function (we retain the original 
notation for this extension) C: [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f (xi)

)
. (3)
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Obviously, for any n ≥ 2, C satisfies the boundary conditions (C1). However, for n > 2, (C2) may fail to be satisfied. 
For example, the smallest binary copula W : [0, 1]2 → [0, 1] is generated by an additive generator fW : [0, 1] → [0, ∞], 
f (x) = 1 − x, and W(x, y) = max(0, x + y − 1). Its n-ary extension is given by

W(x1, . . . , xn) = 1 − min

(
1,

n∑
i=1

(1 − xi)

)
= max

(
0,

n∑
i=1

xi − (n − 1)

)
.

Consider x, y ∈ [0, 1]n, x = ( 1
2 , . . . , 12 ), y = (1, . . . , 1). Then, VW([x, y]) = 1 − n

2 , i.e., this volume is negative when-
ever n > 2, which shows that W is a copula only for n = 2. A complete description of additive generators of binary 
copulas such that the corresponding n-ary function generated given by (3) is also an n-ary copula, n > 2, was given 
by McNeil and Nešlehová in [17].

Theorem 2. Let f : [0, 1] → [0, ∞] be a continuous strictly decreasing function such that f (1) = 0 (i.e., f is an 
additive generator of a continuous Archimedean t-norm; see [13]). Then, the n-ary function C: [0, 1]n → [0, 1] given 
by (3) is an n-ary copula if and only if the function g: [−∞, 0] → [0, 1] given by g(u) = f (−1)(−u) is (n − 2) times 
differentiable with non-negative derivatives g′, . . . , g(n−2) on ] − ∞, 0[, and g(n−2) is convex.

We denote Fn as the class of all additive generators that generate n-ary copulas, as characterized in Theorem 2.
Note that the smallest n-ary generated copula is the non-strict Clayton copula [11,21] CCl

− 1
n−1

: [0, 1]n → [0, 1]
generated by an additive generator f Cl

− 1
n−1

: [0, 1] → [0, ∞], f Cl
− 1

n−1
(x) = 1 − x

1
n−1 .

Universal additive generators yield an n-ary copula for any n ≥ 2. We obtain the next result due to Theorem 2 (see 
also [17]).

Corollary 1. Let f : [0, 1] → [0, ∞] be an additive generator of a binary copula C: [0, 1]2 → [0, 1]. Then, the n-ary 
extension C: [0, 1]n → [0, 1] given by (3) is an n-ary copula for each n ≥ 2 if and only if the function g: [−∞, 0] →
[0, 1] given by g(u) = f (−1)(−u) is absolutely monotonic, i.e., g(k) exists and it is non-negative for each k ∈ N =
{1, 2, . . .}.

The class of all universal additive generators characterized in the corollary above is denoted by F∞. It is not difficult 
to check that F2 ⊃ F3 ⊃ . . . ⊃ F∞. As a typical example to illustrate Corollary 1, we consider the product copula Π
and its corresponding additive generator fΠ : [0, 1] → [0, ∞] given by fΠ(x) = − logx. Obviously, the corresponding 
n-ary copula is the n-ary product and it captures the stochastic dependence structure of n-dimensional random vectors 
with independent marginals, provided that they are continuous. As another example of a universal additive generator, 
we consider the function f : [0, 1] → [0, ∞] given by f (x) = 1

x
−1 with convention f (0) = ∞ (the additive generator 

of the Ali–Mikhail–Haq copula, which is also called the Hamacher product in the t-norms area). Then, f (−1)(u) =
1

u+1 , u ∈ [0, ∞], i.e., g: [−∞, 0] → [0, 1] is given by g(u) = (1 − u)−1. Then, for any k ∈ N , g(k)(u) = k!(1 −
u)−(k+1), i.e., g is absolutely monotonic. The corresponding n-ary copula C: [0, 1]n → [0, 1] is then given by

C(x1, . . . , xn) = 1∑n
i=1

1
xi

− (n − 1)

(obviously, if some values of xi equal 0, because of (C1), C(xi, . . . , xn) = 0).
Recently, the reverse problem of characterizing n-ary copulas generated by an additive generator was solved by 

Stupňanová and Kolesárová [25].

Theorem 3. Let C: [0, 1]n → [0, 1] be an n-ary copula, n > 2. Then, C is generated by an additive generator 
f : [0, 1] → [0, ∞] if and only if C satisfies the diagonal inequality C(x, . . . , x) < x for all x ∈ ]0, 1[, and C is 
associative in the sense of Post, i.e., for any x1, . . . , x2n−1 ∈ [0, 1], it holds that

C
(
C(x1, . . . , xn), xn+1, . . . , x2n−1

)
= C

(
x1,C(x2, . . . , xn+1), xn+2, . . . , x2n−1

) = . . .

= C
(
x1, . . . , xn−1,C(xn, . . . , x2n−1)

)
.
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3. Known methods for constructing additive generators of copulas

Many families of (binary) generated copulas have been obtained as solutions to various problems, including Frank 
copulas [6], Plackett copulas [22], Clayton copulas [4], and Gumbel copulas [8]. Several other ad hoc families have 
also been proposed, such as Yager copulas [27] (a subfamily of Yager t-norms), and a small number of families of 
generated copulas were summarized in [11,21]. Recently, [3] discussed an aggregation function that preserves the 
classes of additive generators (of binary copulas) and their pseudo-inverses. These methods facilitate the construction 
of new additive generators (or their pseudo-inverses) from k a priori given additive generators, k ≥ 2. In the present 
study, we discuss methods for constructing additive generators of copulas (binary, n-ary, universal) from some a priori 
given function. Previously reported methods deal mostly with an a priori given additive generator f and they aim to 
construct new additive generators using f . One of the first results of this type is attributed to [14].

Proposition 1. Let ϕ: [0, 1] → [0, 1] be a concave automorphism (i.e., increasing bijection) of [0, 1]. Then, for any 
f ∈ F2, and f ◦ ϕ ∈ F2.

This result was extended in [5] by relaxing the bijectivity of f , i.e., by considering concave continuous strictly 
increasing transforms ϕ: [0, 1] → [0, 1] such that ϕ(1) = 1, and then again f ◦ ϕ ∈ F2 for any f ∈ F2.

Example 1. Consider fΠ ∈ F2, fΠ(x) = − logx (recall the convention f (0) = ∞), and ϕ: [0, 1] → [0, 1] given by 
ϕ(x) = a + (1 − a)x, a ∈ ]0, 1[. Then, fΠ ◦ ϕ(x) = − log(a + (1 − a)x), x ∈ [0, 1], and the corresponding copula 
C: [0, 1]2 → [0, 1] is given by

C(x, y) = max

(
0,

(a + (1 − a)x)(a + (1 − a)y) − a

1 − a

)
.

In [2], Proposition 1 was modified for the class F∞.

Proposition 2. Let ϕ: [0, 1] → [0, 1] be an automorphism of [0, 1] such that its inverse ϕ−1: [0, 1] → [0, 1] is abso-
lutely monotonic on ]0, 1[ (i.e., (ϕ−1)(k)(x) ≥ 0 for any k ∈ N and x ∈ [0, 1]). Then, for any f ∈ F∞ also f ◦ϕ ∈ F∞.

Using similar ideas to those described in [2,14], we can also prove the next result.

Proposition 3. Let n ∈ {2, 3, . . .}. Let ϕ: [0, 1] → [0, 1] be an automorphism of [0, 1] such that its inverse 
ϕ−1: [0, 1] → [0, 1] has (n − 2) derivatives on ]0, 1[, (ϕ−1)(k)(x) ≥ 0 for all k ∈ 1, . . . , n − 2 and x ∈ ]0, 1[, and 
(ϕ−1)(n−2) is a convex function. Then, for all f ∈ Fn also f ◦ ϕ ∈ Fn.

An alternative approach to the transformation of additive generators was proposed in [2].

Proposition 4. Let η: [0, ∞] → [0, ∞] be a convex automorphism of [0, ∞]. Then, for any f ∈ F2 also η ◦ f ∈ F2.

An important consequence of Proposition 4 is linked to the power functions η(u) = uλ, λ ≥ 1, which ensure that 
any f ∈ F2, and the family (f λ)λ≥1 ⊂ F2. For example, we recall the Gumbel family of copulas linked to the family 
((− logx)λ)λ≥1 of additive generators from F2.

Due to Theorem 2 and Corollary 1, we can derive the next generalization of Proposition 4 for additive generators 
from Fn, n ≥ 2, and from F∞.

Proposition 5. Let n ∈ {2, 3, . . .}. Let η: [0, ∞] → [0, ∞] be an automorphism such that its inverse η−1: [0, ∞] →
[0, ∞] has (n − 2) derivatives (all derivatives) on ]0, ∞[, (η−1)(k)(x) ≥ 0 for all x ∈ ]0, ∞[ and k ∈ {1, . . . , n − 2}
(k ∈ N ) such that (η−1)(n−2) is a convex function. Then, for any f ∈ Fn (any f ∈ F∞) also η ◦ f ∈ Fn (η ◦ f ∈ F∞).

Another method based on an a priori given additive generator f ∈ F2 that yields a parametric family of ad-
ditive generators was obtained as a result of univariate conditioning in [10,16], which can be generalized for any 
n ∈ {3, 4, . . .} ∪ {+∞}.
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Proposition 6. Let f ∈ Fn, n ∈ {2, 3, . . .} ∪ {+∞}. Then, (fλ)λ∈]0,1] ⊂ Fn, where fλ: [0, 1] → [0, ∞] is given by

fλ(x) = f (λx) − f (λ).

The parametric family (fλ)λ∈]0,1] is non-trivial (i.e., its members generate different copulas with different param-
eters) if and only if f do not belong to the Clayton family of additive generators. In the case of Clayton’s additive 
generators, fλ = f for each λ ∈ ]0, 1].

Note that Proposition 1, Proposition 4, and Proposition 6 for n = 2 were also considered by [7] (as the right 
composition, left composition, and scaling rule, respectively) and described further in [19].

Several construction methods are available and we recall some of them. Junker and May [12] showed that for any 
f ∈ F2 and a ∈ ]1, ∞[, also g = af − 1 ∈ F2, for any f ∈ F2 and a ∈ ]0, 1[, also h = a−f − 1 ∈ F2. However, if 
we consider η: [0, ∞] → [0, ∞] given by η(u) = au − 1, a ∈ ]1, ∞[, it is evident that η is a convex automorphism 
of [0, ∞], thus this result is a special instance of Proposition 4. Similarly, η(u) = a−u − 1 defines a convex automor-
phism of [0, ∞] whenever a ∈ ]0, 1]. Another result is attributed to Michiels and Schepper [18,19]. By considering 
f1, f2 ∈ F2 such that (f ′

2)
2 ≤ f ′

2, they also showed that f1(e
−f2) ∈ F2. However, if (f ′

2)
2 ≤ f ′

2, then e−f2 is a con-
cave continuous strictly increasing function that satisfies the modified form of Proposition 1 (due to Durante and 
Sempi [5]).

An interesting link between additive generators of copulas and positive distance functions [15], i.e., distribution 
functions with support in ]0, ∞[, was described in detail in [17]. Based on the results of Williamson [26], we recall 
the next important result.

Theorem 4. (See [17, Corollary 3.1].) The following claims are equivalent for an arbitrary n ∈ {2, 3, . . .}:

(i) f ∈ Fn

(ii) Under the notation of Theorem 2, the function F : ] − ∞, ∞[ → [0, 1] given by F(x) = 0 if x ≤ 0, and for x > 0,

F(x) = 1 −
n−2∑
k=0

xkg(k)(−x)

k! − xn−1g
(n−1)
− (−x)

(n − 1)! (4)

is a distribution function of a positive random variable X (i.e., P(X ≤ 0) = 0), where g(n−1)
− is the left-derivative of 

order n − 1.

We observe that due to [26], if F is a positive distance function, i.e., a distribution function of a positive random 
variable X, then for a fixed n ∈ {2, 3, . . .}, the Williamson n-transform provides an inverse transformation to (4),

g(x) =
∞∫

−x

(
1 + x

t

)n−1

dF(t), (5)

where x ∈ ]−∞, 0], g(−∞) = 0.
Due to the transformations (4) and (5) described above, we can construct new additive generators of (n-dimensional) 

copulas as follows:

• For an arbitrary m ∈ {2, 3, . . .}, take an additive generator f ∈ Fm;
• Introduce a positive distance function F using the (4) transform;
• Possibly modify F into a new positive distance function F̃ (e.g., F̃ (x) = F(x−a) for a fixed constant a ∈ ]0, ∞[);
• Apply the Williamson transform (5) to F̃ by considering a fixed n ∈ {2, 3, . . .}, to obtain a function g̃: [−∞, 0] →

[0, 1];
• f̃ linked to g̃ is an additive generator from Fn.

Note that a similar relationship can be demonstrated between additive generators from F∞ and positive distance 
functions based on the Laplace transform. For further details, we recommend [17].
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Example 2. Consider fW ∈ F2. Then, g: [−∞, 0] → [0, 1] is given by g(x) = max(0, x + 1). Based on transform (4), 
we define a positive distance function F : ] − ∞, ∞[ → [0, 1] given by F(x) = 0 if x ≤ 0, but otherwise by

F(x) = 1 − g(−x) − xg′−(−x) = 1 − max(0,1 − x) − x1]−1,0](−x) =
{

0 x ≤ 1
1 x > 1

,

i.e., F is the Dirac distribution function focused on point x0 = 1. For an arbitrary n ∈ {2, 3, . . .}, the Williamson 
transform (5) defines a function g̃: [−∞, 0] → [0, 1] given by g̃(−∞) = 0, and for x ∈ ]−∞, 0], by

g̃(x) =
∞∫

−x

(
1 + x

t

)n−1

dF(t) = (1 + x)n−1.

Then, the related pseudo-inverse f̃ (−1)
n−1 : [0, ∞] → [0, 1] is given by f̃ (−1)(x) = (1 − x)n−1, and the related additive 

generator f̃ : [0, 1] → [0, ∞] given by f̃ (x) = 1 − x
1

n−1 belongs to Fn. We observe that f̃ is an additive generator of 
a non-strict Clayton copula with parameter λ = 1

n−1 (the weakest n-dimensional Archimedean copula).
In the next section, we introduce some new methods for constructing additive generators of copulas.

4. New methods for constructing additive generators of copulas

The next result is a generalization of Proposition 6.

Theorem 5. Let h: [a, b] → [−∞, ∞] be a strictly decreasing convex continuous function. Then, for any non-trivial 
bounded [c, d] ⊆ [a, b] (if h(b) = −∞, then [c, d] ⊂ [a, b[), the function fc,d : [0, 1] → [0, ∞] given by

fc,d(x) = h
(
c + x(d − c)

) − h(d)

is an additive generator from F2.

Proof. First, we observe that c + x(d − c) defines a strictly increasing linear transformation of the arguments from 
[0, 1]. Thus, h(c + x(d − c)) defines a continuous, strictly decreasing convex function on [0, 1], and the same holds 
for its shift fc,d . Moreover, fc,d(1) = 0, i.e., fc,d ∈ F2. �
Example 3.

(i) Consider h: [−∞, ∞] → [−∞, ∞] given by h(x) = e−x . Then, for any c, d ∈ ]−∞, ∞[, c < d , fc,d : [0, 1] →
[0, ∞] is given by

fc,d(x) = e−(c+x(d−c)) − e−d = e−c
(
e−x(d−c) − e−(d−c)

)
.

We observe that e−c is a positive multiplicative constant and thus fc,d depends on λ = d − c > 0 only. Then, 
the additive generator fλ ∈ F2 given by fλ(x) = e−λx − e−λ generates the same binary copula as the additive 
generator fc,d .

(ii) Consider h: [0, ∞] → [−∞, ∞], h(x) = 1
arctan x

. Then, h satisfies the constraints of Theorem 5 and thus 
fc,d : [0, 1] → [0, ∞] given for any [c, d] ⊂ [[0, ∞[ by fc,d(x) = 1

arctan(c+x(d−c))
− 1

arctan d
is an additive gen-

erator from F2. In particular, an interesting parametric family (f0,d)d∈]0,∞[ of additive generators from F2 is 
given by

f0,d (x) = 1

arctandx
− 1

arctand
.

(iii) Consider h: [−∞, ∞] → [−∞, ∞] given by h(x) = − logx. Due to Theorem 5, for any 0 ≤ c < d < ∞, 
fc,d : [0, ∞] ∈ [0, 1] given by

fc,d(x) = − log
(
c + x(d − c)

) − logd = − log
(
a + (1 − a)x

)
,

where a = c
d

∈ [0, 1[ is an additive generator from F2 (also compare Example 1)
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Theorem 5 can be generalized to obtain additive generators from Fn, n ∈ {3, 4, . . .}, and from F∞.

Theorem 6. Let h: [a, b] → [−∞, ∞] satisfy the constraints of Theorem 5. Then,

i) If for n ∈ {3, 4, . . .}, the inverse function h−1 has (n − 2) derivatives on ]h(b), h(a)[ such that (h−1)(k)(x) ·
(−1)k ≥ 0 for all k ∈ {1, . . . , n − 2} and x ∈ ]h(b), h(a)[, and (h−1)(n−2)(−1)k is convex, then for any bounded 
interval [c, d] ⊂ [a, b] (if h(b) = −∞, then d < b), the function fc,d given in Theorem 5 is an additive generator 
from Fn.

ii) If the inverse function h−1 is totally monotonic on ]h(b), h(a)[, then fc,d given in Theorem 5 belongs to F∞.

As examples, we observe that fc,d given in Example 3 i) and iii) belong to F∞, i.e., for any dimension n ≥ 2, fc,d

generates an n-ary copula.

Example 4. Define h: [0, ∞] → [−∞, ∞] by h(x) = −x0.4. Then, h−1: [−∞, 0] → [0, ∞] is given
h−1(u) = (−u)2.5. It is evident that (h−1)′(u) = − 5

2 (−u)1.5, (h−1)′′(u) = − 15
4 (−u)0.5, (h−1)′′′(u) = − 15

8 (−u)0.5, 
(h−1)(4)(u) = − 15

16 (−u)−1.5, i.e., h satisfies the constraints of Theorem 6 i) for n = 3 but not for n = 4. Thus, 
fc,d : [0, 1] → [0, ∞] given that for 0 ≤ c < d < ∞, by fc,d(x) = d0.4 − (c + (d − c)x)0.4 generates a three-
dimensional copula but not a four-dimensional copula. We observe that if c = 0, then f0,d (x) = d0.4(1 − x0.4) is 
the Clayton copula with parameter −0.4 (see [11,21]).

Obviously, any additive generator f ∈ F2 (Fn, F∞) satisfies the constraints of Theorem 5 (Theorem 6), thus our 
results can be viewed as an extension and generalization of Proposition 6. Moreover, we can generalize Proposi-
tions 1–5 to construct additive generators using Theorems 5 and 6 in two ways: we can either apply them directly to 
the introduced additive generators fc,d , or we can apply them (in modified form) to the generating function h. We 
illustrate the latter approach with the modified Proposition 1.

Theorem 7. Let h: [a, b] → [−∞, ∞] satisfy the constraints of Theorem 5. Let ϕ: [α, β] → [a, b] be a concave 
increasing bijection. Then, the function h ◦ ϕ: [α, β] → [−∞, ∞] also satisfies the constraints of Theorem 5, i.e., for 
any bounded interval [γ, δ] ⊆ [α, β] (if h(0) = −∞, then δ < β), the function fγ,δ: [0, 1] → [0, ∞] given by

fγ,δ(x) = h
(
ϕ
(
γ + (δ − γ )x

)) − h
(
ϕ(δ)

)
is an additive generator from F2.

Example 5. By continuing Example 4, let ϕ: [0, ∞] → [0, ∞] be given by ϕ(x) = √
x. Then, ϕ is a concave increasing 

bijection. In addition, ϕ|[0,1] is a concave increasing [0, 1] → [0, 1] bijection. For the additive generator fc,d , by ap-
plying Proposition 1, fc,d ◦ϕ|[0,1](x) = d0.4 − (c+ (d − c)

√
x)0.4, while after applying Theorem 7 and by considering 

h ◦ ϕ: [0, ∞] → [0, ∞] given by h ◦ ϕ(x) = −x0.2, for 0 ≤ γ < δ < ∞, we have fγ,δ(x) = δ0.2 − (γ + (δ − γ )x)0.2. 
Note that both fc,d ◦ ϕ|[0,1] and fγ,δ are additive generators from F2.

Another new method for constructing additive generators from F2 is based on the gluing of two additive generators 
from F2. Note that this approach can be extended for any dimension n due to the Williamson transform (5) and 
transform (4).

Theorem 8. Let f1, f2 ∈ F2 and k ∈ ]0, 1[ be given. Define a function f : [0, 1] → [0, ∞], which is also denoted by 
f = f1 ∗k f2, as

f (x) =
{

f1(x)
f1(k)

if x ∈ [0, k],
f2(x)
f2(k)

otherwise

whenever 
f ′

1−(k)

f1(k)
≤ f ′

2−(k)

f2(k)
. If 

f ′
1−(k)

f1(k)
>

f ′
2−(k)

f2(k)
, then
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f (x) =
{

f2(x)
f2(k)

if x ∈ [0, k],
f1(x)
f1(k)

otherwise.

Then, f ∈ F2.

Proof. Evidently, f (k) = 1 = f1(k)
f1(k)

= f2(k)
f2(k)

, thus f is continuous and strictly decreasing, and f (1) = 0. We only need 
to show the convexity of f . Note that both f1, f2 are convex, thus their left (right) derivatives exist at each point 
x ∈ ]0, 1[ and they are decreasing (not necessarily strictly decreasing). Moreover, f ′

1−(k) ≤ f ′
1+(k) ≤ f ′

1−(x) for all 

x ∈ ]k, 1[, and similarly for f2. Consider 
f ′

1−(k)

f1(k)
≤ f ′

2−(k)

f2(k)
. Then, f ′−(x) = f ′

1−(x)

f1(k)
for all x ∈ ]0, k] and f ′−(x) = f ′

2−(x)

f2(k)

for all x ∈ ]k, 1[. Consequently, f− is decreasing. Similarly, f+ is decreasing because f ′+(x) = f ′
1+(x)

f1(k)
for all x ∈ ]0, k[

and f ′+(x) = f ′
2+(x)

f2(k)
for all x ∈ [k, 1[. Hence, f is convex. The remaining case yields the convexity of f in a similar 

manner. �
In general, we observe that the operation ∗k acting on F2 is neither commutative nor associative. The next result is 

not difficult to confirm so its proof is omitted.

Proposition 7. Let f1, f2 ∈ F2 generate the Archimedean copulas C1, C2 ∈ C2. Fix k ∈ ]0, 1[, and let f = f1 ∗k f2

generate an Archimedean copula C. Suppose that 
f ′

1−(k)

f1(k)
≤ f ′

2−(k)

f2(k)
, then:

i) C(x, y) = C1(x, y) for all (x, y) ∈ [0, k]2,
ii) C(x, y) = C2(x, y) for all (x, y) ∈ [k, 1]2 such that f2(x) + f2(y) ≤ f2(k).

Due to Proposition 7, copula C obtained by the gluing method ∗k can be viewed as the gluing of copulas C1 and C2
via an interpolation method. We observe that the positive multiplicative constants do not influence our gluing method, 
i.e., for each c, d ∈]0, ∞[ and f1, f2 ∈ F2, (cf1) ∗k (df2) = f1 ∗k f2.

Example 6. Consider two basic Archimedean copulas W, Π ∈ C2 and their additive generators fW, fΠ ∈ F2, fW(x) =
1 − x, fΠ(x) = − logx. For any fixed k ∈ ]0, 1[,

f ′
W(k)

fW (k)
= −1

1 − k
≥ 1

k logk
= f ′

Π(k)

fΠ(k)
.

Therefore, fk = fW ∗k fΠ is given by

fk(x) =
{

logk(x) if x ∈ [0, k],
1−x
1−k

otherwise.

The corresponding Archimedean copula Ck ∈ C2 is given by

C(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xy if (x, y) ∈ [0, k]2,

x + y − 1 if x + y > k + 1,

x · k 1−y
1−k if x ≤ k < y,

y · k 1−x
1−k if y ≤ k < x,

k
2−x−y

1−k otherwise.

The family of Archimedean copulas (Ck)k∈]0,1[ is continuous and strictly increasing in parameter k, with the limit 
members C0 = W and C1 = Π .

5. Concluding remarks

In this study, we reviewed some previously reported methods for constructing additive generators of copulas (two-
dimensional, n-dimensional, and for any dimension), including a method based on the Williamson transform. These 
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methods are based on a priori knowledge of some additive generators, whereas we introduced a rather general con-
struction method based on a given special real function h, which yields two-parameter families of additive generators. 
Moreover, we introduced a parametric family of methods for gluing two additive generators from F2 into a new 
additive generator from F2. We also illustrated these construction methods by providing several examples.

The connecting methods considered in this study are based on the aggregation of additive generators, as discussed 
previously [3], and they have high potential for fitting purposes when modeling the stochastic dependence structure 
of real data from many different domains, including finance, hydrology, sociology, economics, engineering, and in-
formation sciences.
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a b s t r a c t

The most applied class of copulas for fitting purposes is undoubtedly the class of Archime-
dean copulas due to their representation by means of single functions of one variable, i.e.,
by means of additive generators or the corresponding pseudo-inverses. In this paper, we
characterize aggregation functions preserving additive generators (pseudo-inverses of
additive generators) of Archimedean copulas. As a by-product, we obtain an efficient
method to construct new additive generators from some given ones.
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1. Introduction

Since their proposal by Sklar [22], copulas became an important tool for the study and modelling problems dealing with
random vectors. In this paper we will consider only bivariate random vectors, and hence only bivariate copulas. From the

axiomatic point of view, copula is a function C : ½0;1�2 ! ½0;1� satisfying

(a) the boundary conditions Cðu;0Þ ¼ Cð0;vÞ ¼ 0 (C is grounded), Cðu;1Þ ¼ u; Cð1;vÞ ¼ v (1 is neutral element of C)
(b) 2-increasing property Cðu;vÞ þ Cðu0;v 0Þ � Cðu;v 0Þ � Cðu0;vÞP 0 for all u; v;u0;v 0 2 ½0;1�; u 6 u0; v 6 v 0.

From the statistical point of view, a copula C : ½0;1�2 ! ½0;1� is a function such that for any marginal distribution func-
tions FX ; FY : R! ½0;1� of random variables X and Y, the function FZ : R2 ! ½0;1� given by

FZðx; yÞ ¼ C FXðxÞ; FY ðyÞð Þ;

is a joint distribution function of some random vector Z ¼ ðX;YÞ. Copula C describes here the dependence structure of the
random vector Z. For more details we recommend [11,20].
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A special class of copulas is characterized by associativity, CðCðu; vÞ;wÞ ¼ Cðu;Cðv ;wÞÞ and diagonal inequality Cðu;uÞ < u
(for all u 2�0;1½). This class appearing first in the study of probabilistic metric spaces [21], is called the class of Archimedean
copulas, and due to Moynihan [19] we have the next important characterization result.

Theorem 1 (Moynihan [19]). A function C : ½0;1�2 ! ½0;1� is an Archimedean copula if and only if there is a continuous strictly
decreasing convex function f : ½0;1� ! ½0;1� satisfying f ð1Þ ¼ 0, called an additive generator, so that

Cðu; vÞ ¼ gðf ðuÞ þ f ðvÞÞ;

where g : ½0;1� ! ½0;1� is given by gðxÞ ¼ f�1ðMinðf ð0Þ; xÞÞ, and it is called a pseudo-inverse of f.
Note that pseudo-inverses were deeply discussed in [14], and for a decreasing non-constant function h : ½c; d� ! ½a; b� the

corresponding pseudo-inverse is given by

hð�1ÞðxÞ ¼ supft 2 ½a; b�jhðtÞ > xg;

with the convention sup ; ¼ a. It is not difficult to check that, when considering the functions f ; g from Theorem 1, then

g ¼ f ð�1Þ and f ¼ gð�1Þ, i.e., the information contained in the additive generator f of an Archimedean copula C is the same

as the information contained in its pseudo-inverse g, and that Cðu;vÞ ¼ f ð�1Þðf ðuÞ þ f ðvÞÞ ¼ gðgð�1ÞðuÞ þ gð�1ÞðvÞÞ. In fact, in
the literature both forms are used, the first one (based on an additive generator f) being preferred in probabilistic areas, while
the second one (based on g) is more frequently used in the statistical literature.

We denote by F the class of all additive generators f, i.e., of all functions f : ½0;1� ! ½0;1� which are continuous, strictly
decreasing, convex and satisfying f ð1Þ ¼ 0. Observe that if f 2 F then also c f 2 F for any positive constant c 2�0;1½, and that
if an Archimedean copula C is generated by two additive generators f 1 and f 2, then necessarily f 1 ¼ c f 2 for some c 2�0;1½.

We denote by G the class of all pseudo-inverses g of additive generators f 2 F .

Lemma 1. A function g : ½0;1� ! ½0;1� belongs to G if and only if it is continuous, convex, gð0Þ ¼ 1, and there is a constant
a 2�0;1� such that g is strictly decreasing on ½0; a�, and gðxÞ ¼ 0 for all x 2 ½a;1�.

Proof. Suppose g 2 G, i.e., there is f 2 F such that g ¼ f ð�1Þ. Then clearly gð0Þ ¼ 1, and due to results from [14], g is contin-
uous and decreasing. Moreover, denoting a ¼ f ð0Þ; g is vanishing on ½a;1�. Then the convexity of g on ½0;1� is guaranteed by

the convexity of g on ½0; a�. Finally, the function h : ½0; a� ! ½0;1�; hðxÞ ¼ gðxÞ, is the inverse of f ; h ¼ f�1 and thus strictly
decreasing and convex, concluding the necessity part of this lemma. To see the sufficiency, it is enough to consider

f ¼ h�1, where h : ½0; a� ! ½0;1� is given as above, hðxÞ ¼ gðxÞ. Then evidently f 2 F and g ¼ f ð�1Þ, i.e., g 2 G. h

Observe that Lemma 1 allows to consider the class G independently of the class F .
The aim of this paper is to study construction methods for additive generators (or their pseudo-inverses) of Archimedean

copulas from some a priori given additive generators (pseudo-inverses) by means of aggregation functions. In the next sec-
tion, we characterize aggregation functions preserving the class F of all additive generators of Archimedean copulas. Section
3 brings a characterization of aggregation functions preserving the class G of all pseudo-inverses of additive generators of
Archimedean copulas. Finally, some concluding remarks are given.

2. Aggregation of additive generators of Archimedean copulas

Note, first of all, that the class F is convex, i.e., for any f 1; . . . ; f n 2 F and c1; . . . ; cn 2 ½0;1�;
Pn

i¼1ci ¼ 1, also
f ¼

Pn
i¼1cif i 2 F . Due to the already mentioned fact that any positive multiple c f of an additive generator f 2 F is again

an additive generator, c f 2 F , we see that one can relax the constraint
Pn

i¼1ci ¼ 1 into
Pn

i¼1ci > 0, i.e., any non-trivial
non-negative linear combination of additive generators from F is again an element of F . For more details and examples
see [1].

Recall that, for n 2 f2;3; . . .g, an aggregation function A : ½a; b�n ! ½a; b� is characterized by the increasing monotonicity in
each coordinate and by boundary conditions Aða; . . . ; aÞ ¼ a and Aðb; . . . ; bÞ ¼ b. For more details we recommend [5,8,3], see
also [9,10].

To aggregate additive generators f 1; . . . ; f n 2 F into an additive generator f 2 F ; f ¼ Aðf 1; . . . ; f nÞ, i.e., for all
x 2 ½0;1�; f ðxÞ ¼ Aðf 1ðxÞ; . . . ; f nðxÞÞ, obviously one should consider the interval ½a; b� ¼ ½0;1� for inputs/output domain of con-
sidered values, i.e., we look for appropriate aggregation functions A : ½0;1�n ! ½0;1�. It is immediate that due to the bound-
ary condition for additive generators and agg. functions, f ð1Þ ¼ Aðf 1ð1Þ; . . . ; f nð1ÞÞ ¼ Að0; . . . ;0Þ ¼ 0, independently of A and
f 1; . . . ; f n 2 F . To ensure the continuity of f ;A should be continuous. Similarly, to ensure the strict monotonicity of f ;A should
be jointly strictly increasing, i.e., AðxÞ < AðyÞ whenever x; y 2 ½0;1�n and xi < yi; i ¼ 1; . . . ;n. To ensure f 2 F we have to
ensure the convexity of f.

The next theorem gives a complete characterization of aggregation functions preserving the class F of all additive gen-
erators of copulas.
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Theorem 2. Let n 2 f2;3; . . .g and A : ½0;1�n ! ½0;1� be an aggregation function. Then the following are equivalent:

(i) for any f 1; . . . ; f n 2 F also f 2 F , where f ¼ Aðf 1; . . . ; f nÞ
(ii) A is a continuous jointly strictly increasing aggregation function satisfying, for all x; y 2�0;1½n,

2A xþ y
2

� �
6 AðxÞ þ Aðxþ yÞ: ð1Þ

Proof. We have to show only the fact that the convexity of f ¼ Aðf 1; . . . ; f nÞ, for any f 1; . . . ; f n 2 F , is equivalent to the fact
that inequality (1) is satisfied for all x; y 2�0;1½n, and thus, due to the continuity of A, also to all x; y 2 ½0;1�n. Observe that
our condition (1) is weaker than the standard (Jensen) convexity.

Suppose the inequality (1) holds true and consider any points x; y 2�0;1½; x > y. The convexity of f is equivalent to its
Jensen’s convexity, which is valid because of

f
xþ y

2

� �
¼ A f 1

xþ y
2

� �
; . . . ; f n

xþ y
2

� �� �
6 A

f 1ðxÞ þ f 1ðyÞ
2

; . . . ;
f nðxÞ þ f nðyÞ

2

� �

¼ A f 1ðxÞ þ
f 1ðyÞ � f 1ðxÞ

2
; . . . ; f nðxÞ þ

f nðyÞ � f nðxÞ
2

� �
6

Aðf 1ðxÞ; . . . ; f nðxÞÞ þ Aðf 1ðyÞ; . . . ; f nðyÞÞ
2

¼ f ðxÞ þ f ðyÞ
2

;

considering x ¼ ðf 1ðxÞ; . . . ; f nðxÞÞ; y ¼ f 1ðyÞ�f 1ðxÞ
2 ; . . . ; f nðyÞ�f nðxÞ

2

� �
2�0;1½n, where the first inequality follows from the monoto-

nicity of A and Jensen’s convexity of f 1; . . . ; f n.

On the other hand, consider that (i) holds true. For a fixed couple x; y 2�0;1½n, denote v ¼
Min

y1
x1
;...;

yn
xn

� �
1þMin

y1
x1
;...;

yn
xn

� �. Clearly, v 2�0;1½.

For i ¼ 1; . . . ;n, define f i : ½0;1� ! ½0;1� by

f iðxÞ ¼
xi

1�v ð1� xÞ if x 2 ½v ;1�;
xi þ 2yi � 2yi

v x elsewhere:

(

Observe that each f i is a piecewise linear function with slopes �xi
1�v on ½v ;1� and �2yi

v on ½0;v �. Moreover

�xi

1� v �
�2yi

v

� �
¼ 1þMin

y1

x1
; . . . ;

yn

xn

� �� �
2yi

Min y1
x1
; . . . ; yn

xn

� �� xi

0
@

1
AP xi > 0;

and thus each f i is an additive generator from F . Then also f ¼ Aðf 1; . . . ; f nÞ 2 F , and hence necessarily

2f
3
4

v
� �

6 f
v
2

� �
þ f ðvÞ:

Note that, for i ¼ 1; . . . ;n,

f iðvÞ ¼ xi;

f i
v
2

� �
¼ xi þ yi;

f i
3
4

v
� �

¼ xi þ
yi

2
:

Consequently,

2f
3
4

v
� �

¼ 2A f 1
3
4

v
� �

; . . . ; f n
3
4

v
� �� �

¼ 2A xþ y
2

� �
6 AðxÞ þ Aðxþ yÞ ¼ f ðvÞ þ f

v
2

� �
;

providing the validity of (ii). h

Remark 1. Theorem 2 deals with the presentation of convexity of composite functions. Evidently, for any convex function
F : ½0;1�n ! ½0;1� and convex functions f 1; . . . ; f n : ½0;1� ! ½0;1�, also the function f : ½0;1� ! ½0;1� given by
f ðxÞ ¼ Fðf 1ðxÞ; . . . ; f nðxÞÞ is convex. Note that the convexity of F means that Fðkxþ ð1� kÞyÞ 6 kFðxÞ þ ð1� kÞFðyÞ for all
x; y 2 ½0;1�n and k 2 ½0;1� (or equivalently, 2F xþy

2

� �
6 FðxÞ þ FðyÞ for all x; y 2 ½0;1�n, i.e., convexity coincides with the Jensen

convexity). However, convexity of F is sufficient but not necessary, see [4]. As a typical example it is enough to recall the Max
function on ½0;1�n, which is not convex but it preserves the convexity of inner functions f 1; . . . ; f n, i.e., f ¼ Maxðf 1; . . . ; f nÞ, is
convex whenever f 1; . . . ; f n are convex.
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Another sufficient but not necessary condition on F to preserve the convexity is the directional convexity [17,6], known
also as ultramodularity [16,13]. Recall that F : ½0;1�n ! ½0;1� is ultramodular (directionally convex) if and only if for each
x; y; z 2 ½0;1�n it satisfies the inequality

Fðxþ y þ zÞ þ FðxÞP Fðxþ yÞ þ Fðxþ zÞ:

Again, Max is not ultramodular.
Our sufficient and necessary condition (1) for a continuous jointly strictly monotone aggregation function A to preserve

the class F of all additive generators of 2-copulas can be seen as a weaker form of both above types of convexity and it can be
called an ordered convexity. Indeed, the inequality (1) can be seen as the Jensen convexity 2F uþv

2

� �
6 FðuÞ þ FðvÞ valid for all

ordered (i.e., comparable) pairs u;v 2 ½0;1�n (and then (1) is obtained putting x ¼ Minðu;vÞ and y ¼ ju� vj).
Recall also the link between additive generators of copulas and distribution functions of positive random variable through

the Williamson transform (Laplace transform) as given in [18,12]. Then one can apply any aggregation preserving such
distribution functions (e.g., mixtures). However, such an approach is out of the framework of this paper, where the point-
wise aggregation of additive generators (or their pseudo-inverses) are considered.

Example 1

(i) Consider Aðx1; . . . ; xnÞ ¼ Minðx1; . . . ; xnÞ which is continuous, jointly strictly increasing aggregation function on ½0;1�.
However, fix x2 ¼ . . . ¼ xn ¼ 1. Then Aðx;1; . . . ;1Þ ¼ Minðx;1Þ is not a convex function (indeed, it is concave piecewise
linear function). Define f 1; f 2 2 F by

f 1ðxÞ ¼
1� 2x if x 2 ½0; 1

3�;
1�x

2 elsewhere;

(

f 2ðxÞ ¼
2� 9x if x 2 ½0; 1

6�;
3ð1�xÞ

5 elsewhere:

(

Then f ¼ Minðf 1; f 2Þ is given by

f ðxÞ ¼

1� 2x if x 2 ½0; 1
7�;

2� 9x if x 2 ½17 ; 1
6�;

3ð1�xÞ
5 if x 2 ½16 ; 2

7�;
1� 2x if x 2 ½27 ; 1

3�;
1�x

2 if x 2 ½13 ;1�;

2
6666664

which clearly is not convex and thus f R F .
(ii) As a positive example of aggregation functions satisfying the constraints of Theorem 1 we can consider:

– The weighted sum Aðx1; . . . ; xnÞ ¼
Pn

i¼1cixi; ci P 0;
Pn

i¼1ci > 0 (see also the discussion at the beginning of this
section);

– the product Aðx1; . . . ; xnÞ ¼
Qn

i¼1xi;
– the maximum Aðx1; . . . ; xnÞ ¼ Maxðx1; . . . ; xnÞ;
- the p-sum Aðx1; . . . ; xnÞ ¼

Pn
i¼1xp

i

� �1=p
; p 2 ½1;1½.

Note that each composition of aggregation functions (including the discussed one-dimensional transformation u) satis-

fying Theorem 1 will again satisfy all constraints of Theorem 1. For example, consider Aðx1; x2; x3Þ ¼ ðx4
1 þ x2

2 þ x3
3Þ

1=2, or
Aðx1; . . . ; x5Þ ¼ Maxðx2

1x3
3;2x2 þ 3x4x2

5Þ. Moreover, if A satisfying the constraints of Theorem 1 has 0 as its annihilator, i.e., if
xi ¼ 0 for some i 2 f1; . . . ;ng then Aðx1; . . . ; xnÞ ¼ 0, also new aggregation given by Aðx1 þ c1; . . . ; xn þ cnÞ ¼ 0, where ci P 0
and

Qn
i¼1ci ¼ 0, will also satisfy the constraints of Theorem 1. As an example one can consider Aðx1; x2Þ ¼ x1ðx2 þ 1Þ.

3. Aggregation of pseudo-inverses from G

Observe first that two pseudo-inverses g1; g2 2 G generate the same Archimedean copula if and only if g1ðxÞ ¼ g2ðc xÞ for
some constant c 2�0;1½. Similarly to class F , also the class G is convex, see [1]. However, one should stress that a non-trivial
convex combination of pseudo-inverses g1; . . . ; gn 2 G related to a given Archimedean copula C yields a pseudo-inverse g 2 G
linked to some different copula D (contradicting the related convex combination of additive generators).

Example 2. Consider c; d 2�0;1½; c > d. Then the pseudo-inverses g1; g2 2 G given by g1ðxÞ ¼ Maxð1� c x;0Þ and
g2ðxÞ ¼ Maxð1� dx;0Þ generates the smallest copula W;Wðu;vÞ ¼ Maxð0;uþ v � 1Þ. The arithmetic mean g ¼ g1þg2

2 2 G is
given by
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gðxÞ ¼
1� cþd

2 x if x 2 ½0; 1
c�;

1�d x
2 if x 2 ½1c ; 1

d�;
0 elsewhere;

8><
>:

and it generates an Archimedean copula C – W . Obviously, for each a 2�0;1½, the pair c0 ¼ ac; d0 ¼ ad generates the same
copula. For a fixed parameter k ¼ c

d 2�1;1½ we can then introduce a parametric family ðgkÞk2�1;1½ � G given by

gkðxÞ ¼ Max 1� 1þ k
2

x;
1� x

2
;0

� �
:

Note that the corresponding family ðf kÞk2�1;1½ � F of additive generators is given by

f yðxÞ ¼ Max 1� 2x;
2

1þ k
ð1� xÞ

� �
:

To aggregate functions g1; . . . ; gn 2 G, we should consider aggregation functions A : ½0;1�n ! ½0;1�. Evidently, the function
g ¼ Aðg1; . . . ; gnÞ satisfies gð0Þ ¼ Aðg1ð0Þ; . . . ; gnð0ÞÞ ¼ Að1; . . . ;1Þ ¼ 1.

The monotonicity of pseudo-inverses g 2 G, i.e., the fact that it is strictly decreasing on ½0; a� and that it vanishes on ½a;1�,
with a ¼ Minðx 2�0;1�jgðxÞ ¼ 1Þ (observe that due to gð1Þ ¼ 0 and continuity of g; a is well defined), is preserved by an
aggregation function A if and only if AðxÞ > AðyÞ for all x; y 2 ½0;1�n such that x1 P y1; . . . ; xn P yn; AðyÞ > 0, and if yi > 0 then
xi – yi; i 2 f1; . . . ;ng. We will call this property weak joint strict increasingness of A. Obviously, each jointly strictly increasing
aggregation function A is also weak jointly strictly increasing. Again, only the preservation of convexity of elements of G
remains to be guaranteed.

Theorem 3. Let n 2 f2;3; . . .g be fixed and let A : ½0;1�n ! ½0;1� be an aggregation function. Then the following are equivalent.

(i) for any g1; . . . ; gn 2 G, also g 2 G, where g ¼ Aðg1; . . . ; gnÞ;
(ii) A is continuous, weak jointly strictly increasing, and for all x; y 2 ½0;1½n; x P y such that if xi ¼ yi then

xi ¼ yi ¼ 0; i 2 f1; . . . ;ng, then

A
xþ y

2

� �
6

AðxÞ þ AðyÞ
2

: ð2Þ

Proof. Due to the above discussion, only the convexity issues should be shown. Evidently, (2) ensures the convexity of g,
independently of g1; . . . ; gn 2 G. On the other side, suppose (i) holds true, and consider x; y 2 ½0;1½n; x P y such that
xi ¼ yi only if xi ¼ yi ¼ 0; i 2 f1; . . . ;ng. Obviously, if x ¼ y ¼ 0, (2) holds. Hence suppose x – 0 and put v ¼ 2 max 1�yi

1�xi
> 1.

If xi ¼ yi ¼ 0, we define gi 2 G by giðxÞ ¼ Maxð0;1� xÞ. In the remaining cases, we introduce gi : ½0;1� ! 0 by

giðxÞ ¼ Max 0;1� ð1� xiÞx;
xiv � yi � ðxi � yiÞx

v � 1

� �
:

The slope of g on ½0;1� is �ð1� xiÞ, on 1; xiv�yi
xi�yi

h i
it is � xi�yi

v�1 , and on xiv�yi
xi�yi

;1
h i

, it is 0. Then the convexity of gi is equivalent to

the validity of the inequality

�ð1� xiÞ 6 �
xi � yi

v � 1
;

which is valid for each v P 1�yi
1�xi

. Hence gi 2 G. Moreover gið1Þ ¼ xi; giðvÞ ¼ yi and giðvþ1
2 Þ ¼

xiþyi
2 . Due to the validity of (i), and

the convexity of g 2 G, it holds

A
xþ y

2

� �
¼ A

x1 þ y1

2
; . . . ;

xn þ yn

2

� �
¼ A g1

v þ 1
2

� �
; . . . ; gn

v þ 1
2

� �� �
¼ g

v þ 1
2

� �
6

gðvÞ þ gð1Þ
2

¼ AðxÞ þ AðyÞ
2

;

i.e., (2) is satisfied. h

Observe that due to the continuity of A, property (2) can be seen as an ordered convexity discussed after Theorem 2 (now
on the ½0;1� scale). Due to the relaxed joint strict monotonicity in (ii) of Theorem 2, one can construct aggregation functions
preserving pseudo-inverses of additive generators of Archimedean copulas by means of aggregation functions preserving
additive generators of Archimedean copulas, but not vice versa.

Proposition 1. Let A : ½0;1�n ! ½0;1� be an aggregation function satisfying the constraints of Theorem 2. Then
f ¼ Að1; . . . ;1Þ 2�0;1½, and for any c 2 ½0; b½, the function C : ½0;1�n ! ½0;1� given by

CðxÞ ¼ Maxð0;AðxÞ � cÞ
b� c

ð3Þ

is an aggregation function satisfying all constraints of Theorem 3.
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Proof. The only non-trivial problem is to show the ordered convexity of C. However, this is guaranteed due to the fact that
both constant function 0 and A� c are ordered convex, and max operator preserves the ordered convexity. h

Example 3

(i) Consider A : ½0;1�2 ! ½0;1�; Aðx; yÞ ¼ xþ y. Obviously, A satisfies the constraints of Theorem 2. Then, for any

c 2 ½0;2½, also the function C : ½0;1�2 ! ½0;1� given by

Cðx; yÞ ¼ Max 0;
xþ y� c

2� c

� �
;

satisfies Cðg1; g2Þ 2 G for any g1; g2 2 G. In particular, for c ¼ 1; Cðx; yÞ ¼ Maxð0; xþ y� 1Þ is well known Fréchet–Hoef-
ding lower bound of copulas, i.e., C ¼W .

(ii) For Aðx; yÞ ¼ xy, the corresponding aggregation functions preserving the class G are given by

Cðx; yÞ ¼ Max 0;
xy� c
1� c

� �
; c 2 ½0;1½;

(obviously, c ¼ 0 gives the standard product).

Similarly, for 1-dimensional functions, a function u : ½0;1� ! ½0;1� preserves the class G; uðgÞ 2 G for any g 2 G, if and
only if u is increasing convex surjection which is constant only on the pre-image of 0, i.e., uðxÞ ¼ uðyÞ implies x ¼ y or
uðxÞ ¼ uðyÞ ¼ 0. Then the construction method given in Proposition 1 can be seen as a composition of u : ½0;1� ! ½0;1�
given by uðxÞ ¼ Max 0; x�a

1�a

� �
and B : ½0;1�n ! ½0;1� given by BðxÞ ¼ AðxÞ

b , where a ¼ c
b 2 ½0;1½; C ¼ u � B.

4. Concluding remarks

We have completely characterized aggregation functions preserving the classes F and G of additive generators of Archi-
medean copulas and their pseudo-inverses, vice versa. Observe that though in both cases the crucial problem is the preserv-
ing of convexity, there are several important differences: due to different ranges, types of monotonicity and relationship of
additive generators (pseudo-inverses) generating the same Archimedean copula C. Our results extends the buffer of potential
copulas for fitting purposes. Observe, for example, approach of [2] based on fitting piecewise linear additive generators. This
class has as its counterpart the class of piecewise linear pseudo-inverses from G. Any such function g is determined by points

ðv i; xiÞ; i ¼ 1; . . . ;n, such that xn ¼ 0, and xi�xi�1
v i�v i�1

� �n

i¼1
is an increasing sequence (to ensure the convexity of g), where

ðv0; x0Þ ¼ ð0;1Þ. It is not difficult to check that then g ¼
Pn

i¼1cigi is a convex combination of pseudo-inverses g1; . . . ; gn, all
of them generating the smallest copula W, given by giðxÞ ¼ Max 0;1� x v i

� �
.

Moreover, the corresponding additive generator f 2 F is a piecewise linear function determined by points
ð1;0Þ; ðx1;v1Þ; . . . ; ðxn�1; vn�1Þ; ð0;vnÞ.

In majority of fitting problems, special families of Archimedean copulas, such as Gumbel, Clayton, and Frank, are consid-
ered (see, e.g., [7] among first applications, and [15] providing also software tools). Our approach can improve the fitting
power of existing tools, simply considering appropriate aggregation of the best additive generators (pseudo-inverses) from
considered families. To avoid the possible discrepancies caused by non-uniqueness in the relationship of generators and cop-
ulas, we can consider additive generators constrained by f ð12Þ ¼ 1, and in the case of pseudo-inverses by gð1Þ ¼ 1

2. Then there
is a one-to-one correspondence between Archimedean copulas and additive generators (pseudo-inverses of additive gener-
ators). Obviously, to preserve such additive generators by means of an aggregation function A : ½0;1�n ! ½0;1�, one should
consider Að1; . . . ;1Þ ¼ 1, i.e., 1 should be an idempotent element of A. Then, for A satisfying the constraints of Theorem 2, it is
enough to consider A� ¼ A

Að1;...;1Þ. Typical examples: product Aðx1; . . . ; xnÞ ¼
Qn

i¼1xi, maximum Aðx1; . . . ; xnÞ ¼ Maxðx1; . . . ; xnÞ,

weighted p-sum Aðx1; . . . ; xnÞ ¼
Pn

i¼1cix
p
i

� �1
p with weights ci;

Pn
i¼1ci ¼ 1.

If, for example, Clayton’s best fitting copula to modelled data is related to (constrained) additive generator f 1, and from
Gumbel family we have obtained additive generator f 2, we can introduce a 1-parameter family

hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf 2

1 þ ð1� kÞf 2
2

q
; k 2 ½0;1� and check its best fitting member. Our result cannot be worse than the original one. A similar

consideration for pseudo-inverses requires to consider aggregation functions A : ½0;1�n ! ½0;1� satisfying the constraints of
Theorem 3, and such appropriate aggregation function should be necessarily idempotent, Aðx; . . . ; xÞ ¼ x for each x 2 ½0;1�.
However, one can consider an arbitrary A fitting Theorem 3, and then ‘‘normalize’’ the output of pseudo-inverse.

Acknowledgements

The support of APVV-0073-10 and APVV-0496-10 is kindly acknowledged. We also thank two anonymous reviewers for
their valuable suggestions.

86 T. Bacigál et al. / Information Sciences 306 (2015) 81–87

80 APPENDIX



References
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CONVERGENCE OF LINEAR APPROXIMATION

OF ARCHIMEDEAN GENERATOR

FROM WILLIAMSON’S TRANSFORM

IN EXAMPLES

Tomáš Bacigál — Mária Žd́ımalová

ABSTRACT. We discuss a new construction method for obtaining additive gen-
erators of Archimedean copulas proposed by McNeil, A. J.—Nešlehová, J.: Multi-
variate Archimedean copulas, d-monotone functions and l1-norm symmetric dis-
tributions, Ann. Statist. 37 (2009), 3059–3097, the so-called Williamson n-trans-

form, and illustrate it by several examples. We show that due to the equivalence
of convergences of positive distance functions, additive generators and copulas,
we may approximate any n-dimensional Archimedean copula by an Archimedean
copula generated by a transformation of weighted sum of Dirac functions con-
centrated in certain suitable points. Specifically, in two dimensional case this
means that any Archimedean copula can be approximated by a piece-wise linear

Archimedean copula, moreover the approximation of generator by linear splines
circumvents the problem with the non-existence of explicit inverse.

1. Introduction

Copulas form an important class of multivariate dependence models. They
have a lot of practical applications, including multivariate survival modelling.
Recall that copulas aggregate 1-dimensional marginal distribution functions into
n-dimensional (n ≥ 2) joint distribution functions. For more details we recom-
mend [13].

We first define a copula. A function C : [0, 1]n → [0, 1] is called a (n-dimen-
sional) copula whenever it satisfies the boundary conditions (C1) and it is an
n-increasing function, see (C2), where:
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(C1) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn}, i.e., 0 is an annihilator of C,
and C(x1, . . . , xn) = xi whenever xj = 1 for each j �= i (i.e., 1 is a neutral
element of C).

(C2) For any x,y ∈ [0, 1]n, x ≤ y, it holds

VC([x,y]) =
∑

ε∈{−1,1}n

(
C(zε)

n∏

i=1

εi

)
≥ 0,

where zε =
(
zε1
1 , . . . , zεn

n

)
, z1

i = yi, z−1
i = xi.

Note that VC([x,y]) is called the C-volume of the n-dimensional interval (n-box)
[x,y].

Due to S k l a r’ s theorem [16] for a random vector Z =(X1, . . . , Xn), a func-
tion FZ : Rn → [0, 1] is a joint distribution function of Z if and only if there is
a copula C : [0, 1]n → [0, 1] so that

FZ(x1, . . . , xn) = C
(
FX1

(x1), . . . , FXn
(xn)

)
, (1)

where FXi
: R → [0, 1] is a distribution function related to the random variable

Xi, i = 1, . . . , n. The copula C in (1) is unique whenever random variables
X1, . . . , Xn are continuous. For some other details on copulas see [5] and [13].

Hereafter we will consider a class of copulas named Archimedean copulas.
In the simplest case, Archimedean 2-copulas are characterized by the associativ-
ity of C and the diagonal inequality C(x, x) < x for all x ∈]0, 1[. They are neces-
sarily symmetric, i.e., they can model the stochastic dependence of exchangeable
random variables (X, Y ) only, yet their popularity in practice (hydrology, finan-
cial, and other applied areas) is indisputable, mainly due to the representation
using one-dimensional functions called generators as shown in the next result,
attributed to M o y n i h a n [12].

������� 1� A function C : [0, 1]2 → [0, 1] is an Archimedean copula if and only
if there is a convex (i.e., a 2-monotone) continuous strictly decreasing function
f : [0, 1] → [0, ∞], f(1) = 0, so that

C(x, y) = f (−1)
(
f(x) + f(y)

)
, (2)

where the pseudo-inverse f (−1) : [0, ∞] → [0, 1] is given by

f (−1)(u) = f−1
(
min

(
u, f(0)

))
.

The function f is called an additive generator of the copula C, and it is unique
up to a positive multiplicative constant.

Let F2 be the class of all additive generators of binary copulas characterized in
the above theorem. More details about the generators can be found in [5], [6], [13]
and about construction methods for additive generators in [1], [2], [4], [7], [11].

2
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Before we review several known facts for additive generators of copulas, let us
briefly recall a link between copula C and Spearman’s correlation coefficient ρ,

ρ = 12E[UV ] − 3 = 12

∫ ∫

[0,1]2

uvdC(u, v) − 3 = 12

∫ ∫

[0,1]2

C(u, v)dudv − 3 (3)

as well as Kendall’s correlation coefficient τ ,

τ = 4E
[
C(U, V )

]
− 1 = 4

∫ ∫

[0,1]2

C(u, v) dC(u, v) − 1, (4)

where U = FX(X) and V = FY (Y ) are uniformly distributed random variables
that are connected by the same copula as are X and Y. Alternatively, Kendall’s
tau can be computed directly from copula generator,

τ = 1 + 4

1∫

0

f(t)

f ′(t)
dt = 1 − 4

∞∫

0

t
(
f (−1)′

(t)
)2

dt

which is far more convenient.

Any binary Archimedean copula C : [0, 1]2 → [0, 1] generated by an additive
generator f : [0, 1] → [0, ∞], is also a triangular norm [6], [15] and thus, it can be
univocally extended to an n-ary function (we keep the original notation also for
this extension) C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f(xi)

)
. (5)

Obviously, for any n ≥ 2, C satisfies the boundary conditions (C1). However, for
n > 2, (C2) may fail. For example, the smallest binary copula W : [0, 1]2 → [0, 1]
given by W (x, y) = max(0, x + y − 1) is generated by the additive generator
fW : [0, 1] → [0, ∞], fW (x) = 1 − x. Its n-ary extension is given by

W (x1, . . . , xn) = 1 − min

(
1,

n∑

i=1

(1 − xi)

)
= max

(
0,

n∑

i=1

xi − (n − 1)

)
.

Consider x,y ∈ [0, 1]n, x =
(

1
2 , . . . , 1

2

)
, y = (1, . . . , 1). Then VW ([x,y]) = 1 − n

2 ,
i.e., this volume is negative whenever n > 2, which shows that W is a copula
only for n = 2. A complete description of additive generators of binary copulas
such that the corresponding generated n-ary function is also an n-ary copula,
n > 2, was given by M c N e i l and N e š l e h o v á in [8] and is recalled in the
next theorem.

������� 2� Let f : [0, 1] → [0, ∞] be a continuous strictly decreasing func-
tion such that f(1) = 0 (i.e., f is an additive generator of a continuous Archime-
dean t-norm, see [6]). Then the n-ary function C : [0, 1]n → [0, 1] given by (5)

3
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is an n-ary copula if and only if the function g : [−∞, 0] → [0, 1] given by
g(u) = f (−1)(−u) is (n − 2)-times differentiable with non-negative derivatives
g′, . . . , g(n−2) on ] − ∞, 0[ (or equivalently, (−1)n(f (−1))(n)(u) ≥ 0), and g(n−2)

is a convex function (see Figure 1).

Figure 1. Illustration of a generator f and its corresponding function g.

We denote by Fn the class of all additive generators that generate n-ary
copulas as characterized in Theorem 2.

Additive generators, which generate an n-ary copula for any n ≥ 2, are called
universal generators. Due to Theorem 2, we have the next result, see also [8].

����		
�� 1� Let f : [0, 1] → [0, ∞] be an additive generator of a binary copula
C : [0, 1]2 → [0, 1]. Then the n-ary extension C : [0, 1]n → [0, 1] given by (5) is an
n-ary copula for each n ≥ 2 if and only if the function g : [−∞, 0] → [0, 1] given
by g(u) = f (−1)(−u) is absolutely monotone, i.e., g(k) exists and is non-negative
for each k ∈ N = {1, 2, . . .}.

The class of all universal additive generators will be denoted by F∞. It is not
difficult to check that F2 ⊃ F3 ⊃ · · · ⊃ F∞.

The reverse problem of characterization of n-ary copulas which are generated
by an additive generator was solved by S t u p ň a n o v á and K o l e s á r o v á [17].

������� 3� Let C : [0, 1]n → [0, 1] be an n-ary copula, n > 2. Then C is
generated by an additive generator f : [0, 1] → [0, ∞] if and only if C satisfies
the diagonal inequality C(x, . . . , x) < x for all x ∈]0, 1[, and C is associative in
the Post sense, i.e., for any x1, . . . , x2n−1 ∈ [0, 1] it holds

C
(
C(x1, . . . , xn), xn+1, . . . , x2n−1

)
=

= C
(
x1, C(x2, . . . , xn+1), xn+2, . . . , x2n−1

)
= . . .

. . . = C
(
x1, . . . , xn−1, C(xn, . . . , x2n−1)

)
.

4
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The n-monotone Archimedean copula generators may be characterized using
a little known integral transform introduced by W i l l i a m s o n in 1956, see [18].
In M c N e i l and N e š l e h o v á [8] there is a description of this transform,
which, for a fixed n ≥ 2, will be called the Williamson n-transform. In what
follows, we discuss the Williamson n-transform and illustrate it by examples.

2. The Williamson n-transform

An interesting link between additive generators of copulas and positive dis-
tance functions [9], i.e., distribution functions with support in ]0, ∞[, was de-
scribed in details in [8]. Based on the results of Williamson [18], we recall the
next important result.

������� 4 (M c N e i l and N e š l e h o v á [8], Corollary 3.1)� The following
claims are equivalent for an arbitrary n ∈ {2, 3, . . .}:

(i) f ∈ Fn.

(ii) Under the notation of Theorem 2, the function F : ] − ∞, ∞[→ [0, 1] given
by F (x) = 0 if x ≤ 0, and for x > 0,

F (x) = 1 −
n−2∑

k=0

(−1)kxk(f (−1))(k)(x)

k!
− (−1)n−1xn−1(f (−1))

(n−1)
+ (x)

(n − 1)!
(6)

is a distribution function of a positive random variable X (i.e., P (X ≤ 0) = 0),

where ·(n−1)
+ denotes the right-derivative of order n − 1.

Note that due to [18], if F is a positive distance function, i.e., a distribution
function of a positive random variable X, then for a fixed n ∈ {2, 3, . . .} the
Williamson n-transform provides an inverse transformation to (6),

f (−1)(x) =

∞∫

x

(
1 − x

t

)n−1

dF (t) =

{
max

(
0, E

[
1 − x

X

]n−1
)
, x > 0,

1 − F (0), x = 0,

where x ∈ [0, ∞[ and f (−1)(∞) = 0. (7)

Note that a similar relationship can be shown between additive generators
from F∞ and positive distance functions, based on the Laplace transform, i.e,

f (−1)(x) =

∞∫

0

e−xt dF (t). (8)

For more and interesting details we recommend [8].
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Let F be a distance function related to a positive random variable X. For any
c > 0, the random variable c.X possesses the distance function Fc given by
Fc(x) = F

(
x
c

)
. Then, for any n ∈ {2, 3, . . .},

f (−1)
c (x) =

∞∫

x

(
1 − x

t

)n−1

dFc(t)

=

∞∫

x

(
1 − x

t

)n−1

dF

(
t

c

)

=

∞∫

x
c

(
1 − x

cu

)n−1

dF (u)

= f (−1)
(x

c

)
.

Obviously, for the related additive generators it holds that fc = c.f , i.e., they
generate the same copula. Vice versa, clearly from (6) it follows that if two gener-
ators generate the same (n-ary) Archimedean copula, the corresponding positive
random variables differ only in a positive multiplicative constant. The next result
follows.

������� 5� For each n ∈ {2, 3, . . .}, there is an one-to-one correspondence
between the class Fn and the class H of all factor classes of positive distance
functions related to the equivalence F ∼ G if and only if G(x) = F

(
x
c

)
for some

c > 0.

In the following, we illustrate the construction method by few examples.

Example 1. Let F be equal to a Dirac function1 focused at point x0 = 1,

F (x) = δ1(x) =

{
0, x < 1,

1, 1 ≤ x,

then, as it is also shown in [8], by the Williamson n-transform we get generator

fn(x) = 1 − x
1

n−1 of the weakest n-dimensional Archimedean copula, i.e., the
non-strict Clayton copula with parameter λ = −1

n−1 , see Figure 2. By rescaling

generator to f̃n(x) = f(x)
f(1/2) , x ∈ [0, 1], the copula would not change, yet such

a generator is fixed to the value f̃n

(
1
2

)
= 1, which we will use later to show

convergence.

1Dirac function is defined as δx0(x) =

{
0, x < x0,

1, x ≥ x0.

6
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Figure 2. Dirac function F , the corresponding generators fn for different n
and rescaled generators f̃n.

Example 2. Let F be a uniform probability distribution function

F (x) =

⎧
⎪⎨
⎪⎩

0, x < a,
x−a
b−a , a ≤ x < b

1, b ≤ x.

with 0 ≤ a < b,

Then for dimension n = 2 we get

f
(−1)
2 (x) =

∞∫

x

(
1 − x

t

)2−1

F ′(t)dt

=

⎧
⎪⎪⎨
⎪⎪⎩

∫ b

a

(
1 − x

t

)
1

b−a dt, x < a,
∫ b

x

(
1 − x

t

)
1

b−a dt, a ≤ x < b,
∫∞

x

(
1 − x

t

)
0 dt, b ≤ x,

=

⎧
⎪⎪⎨
⎪⎪⎩

1
b−a [t − x log t]

b
a = 1 − x log( b

a )
b−a , x < a,

1
b−a [t − x log t]

b
x = b

b−a − x+x log( b
x )

b−a , a ≤ x < b,

0, b ≤ x

(where F ′ denotes a first derivative of F ) from which the corresponding gener-
ator can be obtained only numerically, and so is the case also with the higher
dimensions, e.g.,

f
(−1)
3 (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 − 2x log( b
a )

b−a + x2

ab , x < a,
b

b−a − 2x log
(

b
x

)
− x2

(b−a)b , a ≤ x < b,

0, b ≤ x,

displayed in Figure 3. Setting a = 0 we get τ = 0 regardless of parameter b,
which is in clear accordance with Theorem 5.

7
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Figure 3. Uniform U(a,b) probability distribution function F and pseudo-
inverses of the corresponding generators fn.

We continue with the examples of constructing generators of non-strict Archi-
medean copulas while restricting the support of univariate distribution in the
unit interval. By applying a suitable increasing transformation (such as power
function) to a positive distance function on [0, 1] we obtain a new distribution.

Example 3. Consider a positive distance function F (x) = min(1, x2) and the
corresponding density F ′(x) = 2x on [0, 1]. Then

f
(−1)
2 (x) =

∞∫

x

(
1 − x

t

)2−1

dF (t)

=

⎧
⎪⎨
⎪⎩

1∫
x

(t − x)2t
t

dt = (1 − x)2, 0 ≤ x ≤ 1,

0, 1 < x

= max(1 − x, 0)2.

Then the generator f2(x) = 1−√
x, x ∈ [0, 1], is the generator of Clayton copula

for parameter λ = −1
2 . Nevertheless, in higher dimensions, n ≥ 3, the generator

has no closed form, e.g., f
(−1)
3 (x) = 1 − 4x + x2(3 − 2 logx) for x ∈ [0, 1] and 0,

otherwise (see Figure 4).

Example 4. Let us generalize Example 3 and start with a parametric fam-
ily F (x) = min(1, xp), where p > 0. Observe that limx→0 F (x) = δ0(x) while
limx→∞ F (x) = δ1(x). Then

f
(−1)
2 (x) =

⎧
⎪⎨
⎪⎩

xp−px+p−1
p−1 , 0 ≤ x ≤ 1 ∧ p �= 1,

x(log x − 1) + 1, 0 ≤ x ≤ 1 ∧ p = 1,

0, 1 < x.

8
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Figure 4. Illustration of Example 3 with non-invertible case n = 3.

Though it lacks an explicit inverse, the copulas that it generates cover almost
whole dependence range with τ = 1 − 2p

1+p , τ ∈ (0, 1), and we will use it later

to demonstrate approximation approach. Figure 5 shows simulations from this
parametric copula family for p = 0.5 and p = 2. The only tail dependence is
present at the upper tail for p ∈ (0, 1).

It is interesting to illustrate also the inverse Williamson n-transform.
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Figure 5. Sampling from copula family constructed in Example 4.

Example 5. Let us take a generator of:

• the Ali-Mikhail-Haq copula f(x) = 1
x − 1 corresponding to the parameter

λ = 1 and denote by Fn, n = 2, 3, . . . , a positive distance function related

to f through (6). Then Fn(x) = 1 − 1
1+x − x

(1+x)2 − . . . − xn−1

(1+x)n =
(

x
1+x

)n
which can be viewed as a parametric subfamily of all positive valued dis-
tribution functions Fp with any positive parameter p.

9
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• the product copulaf(x)=− 1
p log x with constantp>0 and inverse f−1(x)=

exp(−px). From (6) for n = 2 we get F (x) = 1 − exp(−px)(1 − px).

By comparing the density ∂F (x)
∂x = p2x exp(−px) and the convolution of

two exponential distribution Dλ densities with parameter λ > 0,
x∫

0

λ exp(−λt)λ exp
(
−λ(x − t)

)
dt = λ2x exp(−λx)

it becomes clear that the resulting distribution is a distribution of the ran-
dom variable Y = X1+X2, where X1, X2 ∼ Dλ are independent (and iden-
tically distributed) random variables. The relation holds for any n ≥ 2, thus
(6) yields a cumulative distribution function of the sum of i.i.d. random

variables X1, . . . , Xn ∼ Dp, FX1+···+Xn
(x) = 1 − exp(−px)

∑n
i=1

(px)i−1

(i−1)!

with p > 0 which defines the Erlang distribution with rate parameter p
and shape parameter n.

To complete the examples, let us illustrate also the Laplace transform.

Example 6. Starting with positive distance function of:

• discrete random variable with probability mass concentrated in λ > 0, i.e.,
Dirac function F (x) = 0 for x < λ and 1 otherwise, then the Laplace
transform leads through g(x) = exp(λx) to the product copula Π.

• exponential distribution F (x) = 1 − exp(−λx), λ > 0, we get f−1(x) =
( λ

x+λ) and f(x) = λ( 1
x − 1) which generates the same copula (Clayton

copula with parameter equal to 1) regardless of the choice of λ.

Now we focus on the Dirac function since it can be viewed as a building block
for distribution functions of a random variable with probability mass concen-
trated in l discrete points. Immediately a question arises: if such a distribution
functions can approximate distribution of a continuous r.v. (for any l, going
possibly to infinity), does this convergence imply also a convergence of the cor-
responding generators and even a convergence of the generated copulas?

3. Convergence theorems

��
������� 1� Let (Fm)m be a sequence of distribution functions and let F be
a distribution function. We say that the sequence of distribution functions Fm,
m = 1, 2, . . . , weakly converge to distribution function F if

lim
m→∞

Fm(x) = F (x)

holds for any point x∈R in which F is continuous. The weak convergence will be

denoted by Fm
w→ F .

10
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Recall that the Lévy-Cramér continuity theorem [14] ensures the convergence∫∞
−∞ h(t)dFm(t) −→

m→∞

∫∞
−∞ h(t)dF (t), where h : ]−∞, ∞[ → ]−∞, ∞[ is a contin-

uous bounded real function and Fmw→F . Obviously, for any n ≥ 2 and x < 0,

the function h : ] − ∞, ∞[→] − ∞, ∞[ given by h(t) =
(
1 + x

t

)n−1
δ−x(t) is con-

tinuous and bounded. This fact proves the next important result.

������� 6� Let a sequence (Fm)m of distance functions converge weakly to

a distance function F , Fm
w→ F . Then, for any n ≥ 2, the corresponding addi-

tive generators f , fm, m = 1, 2, . . . , of n-dimensional Archimedean copulas are
related by the pointwise convergence fm −→

m→∞
f .

P r o o f. Based on the Williamson n-transform (7) and the Lévy-Cramér conti-
nuity theorem, gm → g pointwisely, and all functions g, gm, m = 1, 2, . . . are
convex, continuous and strictly increasing. Then also the related additive gen-
erators f , fm, m = 1, 2, . . . , satisfy fm → f pointwisely. �

The reverse of Theorem 6 is based on the next lemma.

����
 1� Let (fm)m, f be convex real functions defined on a real interval ]α, β[
such that fm → f pointwisely. Then for any point a ∈]α, β[, where f ′(a) exists
it holds limm→∞ f ′(a−) = f ′(a) = limm→∞ f ′

m(a+).

P r o o f. Note that due to the convexity, the left derivatives f ′
m(a−), f ′′

m(a−)
and the right derivatives f ′

m(a+), f ′′
m(a+) exist at each point a ∈]α, β[. More-

over, the convexity ensures also that fm(x) ≥ fm(a) + (x − a)f ′
m(a−) and

fm(x) ≥ fm(a) + (x − a)f ′
m(a+) for any m = 1, 2, . . . and x ∈]α, β[. Fix

a ∈]α, β[. Then, for any x > a, f ′
m(a−) ≤ fm(x)−fm(a)

x−a and thus lim sup f ′
m(a−) ≤

f(x)−f(a)
x−a . Therefore lim sup f ′

m(a−) ≤ limx→a+
f(x)−f(a)

x−a = f ′(a+). Similarly,

lim inf f ′
m(a−) ≥ f ′(a−), which implies the existence of the limit of

(
f ′

m(a−)
)
m

,

whenever f ′(a−) = f ′(a+) = f ′(a), limm→∞ f ′
m(a−) = f ′(a) if f ′(a) exists.

Using similar arguments, if f ′(a) exists, then also limm→∞ f ′
m(a+) = f ′(a). �

Based on Lemma 1, the next result follows directly.

������� 7� Let fm, f ∈ Fn, m = 1, 2, . . . , be additive generators of n-dimen-
sional Archimedean copulas, such that fn → f pointwisely on ]0, 1]. Let Fm, F ,
m = 1, 2, . . . , be the related distance function obtained by means of the trans-

form (6). Then Fm
w→ F .

P r o o f. Based on Theorem 2, g
(k)
m , m = 1, 2, . . . , and g(k) are convex functions

for k = 0, 1, . . . , n − 2. The pointwise convergence fm → f on ]0, 1] implies the
pointwise convergence gm → g on ]−∞, 0[, and due to Lemma 1, repeated (n−2)-

-times, it holds limm→∞ g′
m(x) = g′(x), . . . , limm→∞ g

(n−2)
m (x) = g(n−2)(x) and

11
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limm→∞ g
(n−1)
m (x−) = g(n−1)(x) at each point x ∈] − ∞, 0[, where g(n−1)(x)

exists. Therefore, limm→∞ Fm(x) = F (x) at each point x ∈]0, ∞[, where the
function g(n−1)(x−) is continuous, i.e., where F (x) is continuous. Thus Fmw→F.

�

The next result from [10] was shown for (n-ary) continuous Archimedean
triangular norms (however, any (n-ary) Archimedean copula is also a continuous
Archimedean t-norm) and later for Archimedean copulas in [3, Proposition 2].

������� 8� Let C, Cm : [0, 1]n → [0, 1], m = 1, 2, . . . , be continuous Archime-
dean copulas, generated by additive generators f, fm: [0, 1]→ [0, ∞], m=1, 2, . . . ,
respectively. Then the following are equivalent.

i) Cm −→
m→∞

C pointwisely.

ii) There are positive constants cm, m = 1, 2, . . . , so that cmfm → f point-
wisely.

Combining Theorems 6, 7, 8 we have the next result which can be exploited
when approximating Archimedean copulas.

����		
�� 2� The following convergences of related objects are equivalent
(for any n ≥ 2) :

i) for distance functions, Fm
w→ F ;

ii) for additive generators from Fn, fm → f pointwisely on ]0, 1];

iii) for n-dimensional Archimedean copulas, Cm → C pointwisely.

Recall that each distance function F can be obtained as a weak limit of
(bounded) discrete distance functions Fm, and that each bounded discrete dis-
tance function is, in fact, a convex combination of Dirac distance functions.

4. Approximation

In this section we are interested mainly in (n = 2)-dimensional case, since it
is of most benefit in practice. Therefore hereafter the subscript with generator f
gains a different meaning: the number of pieces f is approximated by.

Example 7. Let F (x) = min(1, x2) be the positive distance function from the
Example 3 and function

F2(x) = F

(
1

2

)
δ 1

2
(x) +

(
F (1) − F

(
1

2

))
δ1(x) =

⎧
⎪⎨
⎪⎩

0, x < 1
2 ,

1
4 , 1

2 ≤ x < 1,

1, 1 ≤ x

12

94 APPENDIX



CONVERGENCE OF LINEAR APPROXIMATION OF ARCHIMEDEAN GENERATOR...

approximates F by means of a sum of m = 2 Dirac functions concentrated
in respective points

(
1
2 , 1

4

)
,
(
1, 3

4

)
. Then the Williamson transform with n = 2

yields

f
(−1)
2 (x) =

1

4
max

(
0, 1 − x

1
2

)
+

3

4
max

(
0, 1 − x

1

)
=

⎧
⎪⎨
⎪⎩

1 − 5
4x, x < 1

2 ,
3
4

− 3
4
x, 1

2
≤ x < 1,

0, 1 ≤ x.

From Example 7 illustrated in Figure 6 we see that for n = 2 the additive

generator inverse f
(−1)
2 is piecewise linear and does not coincide with f (−1) in

the interval ]0, 1[.

Figure 6. Approximation by the sum of m = 2 Dirac functions.

Dividing an interval [a0, am] by points {ai}i=1,...m, a0 < a1 < · · · am, with
concentration of probability given by some probability mass function p(x), the
approximate positive distance function

Fm(x) =

m∑

i=1

p(ai)δai
(x)

is then transformed by (7) to the generator inverse (related to some n-dimen-
sional Archimedean copula)

f (−1)
m (x) =

∑

x<ai

p(ai)

(
1 − x

ai

)n−1

=

m∑

i=1

p(ai) max

(
0, 1 − x

ai

)n−1

. (9)

Observe that the function f
(−1)
m in Equation (9) is an (n−1)-dimensional spline.

For n = 2, both f
(−1)
m and the corresponding additive generator fm are linear

splines, and the related Archimedean copula Cm is piece-wise linear, as shown

in Example 10. In the opposite direction, denote bi = f
(−1)
m (ai) and pi = p(ai)

for i = 1, 2 . . .m with b0 = 1 corresponding to a0 = 0 and, clearly, bm = 0.

13
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Having points {(ai, bi)}i=1,...m, their corresponding probabilities can be found
by solving exquations (9) with x = a1, . . . , am−1 written in the form (for n = 2)

⎛
⎜⎜⎜⎜⎝

1− a1
a2

1− a1
a3

· · · 1− a1
am

0 1− a2
a3

· · · 1− a2
am

...
...

. . .
...

0 0 · · · 1− am−1

am

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

p2

p3

...
pm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b1
b2
...

bm−1

⎞
⎟⎟⎟⎠ .

The solution is p1 = 1 − (p2 + · · · + pm) and

pi =
ai [bi−1(ai+1 − ai) − bi(ai+1 − ai−1 + bi+1(ai − ai−1))]

(ai+1 − ai)(ai − ai−1)
for i = 2, . . .m,

with auxiliary point (am+1, bm+1), where am+1 ≥ am and thus bm+1 = 0.

Example 8. Let F (x) = min(1, xp) be the parametric family from the Exam-
ple 4, then Figure 7 shows contour plots and samples from copulas generated
by (9) with ai = F (ui), where ui is sampled from uniform distribution U(0,1),
and p(ai) = F (ai) − F (ai−1), where i = 1, . . .m, and a0 = 0.

In the following examples we exercise pointwise convergence and show a piece-
wise linear copula corresponding to the simplest non-trivial case n = m = 2.

Example 9. For the simplest case, n = 2, ai = i
m and p(ai) = 1

m , i = 1, . . .m
(evenly spaced and uniformly distributed), we get

f (−1)
m (x) =

m∑

i=1

1

m
max

(
0, 1 − mx

i

)
.

If f
(−1)
m (x) is to converge to f (−1)(x) = 1−x+x log x for x < 1 and 0 elsewhere,

it needs to converge in any point x ∈]0, 1[. Let us examine the convergence, say,
in x = 1

2 , where

f (−1)
m

(
1

2

)
=

1

m

m∑

i=1

max

(
0, 1− m 1

2

i

)

=
1

m

m∑

i=� m
2

�+1

(
1− m

2i

)

=
1

m

m
2∑

i=1

i

i+ m
2

=
1

m

m
2∑

i=1

(
1−

m
2

i+ m
2

)

=
1

2
− 1

2

m∑

i=� m
2

�+1

1

i
.
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Figure 7. Sampling from approximation of copula family constructed in

Example 4 with p = 0.5.

Then indeed

lim
m→∞

f (−1)
m

(
1

2

)
=

1

2
− 1

2

m∫

m
2

1

x
dx =

1

2
− 1

2
[ln x]

m
m
2

=
1

2
− 1

2
ln 2 = f (−1)

(
1

2

)
.

Example 10. Following Example 9, it might help to picture the approximation
copula on a simple setting. Due to Example 2 we already know that the trivial
case m = 1 leads to the weakest copula W. With m = 2 we get

F2(x) =

⎧
⎪⎨
⎪⎩

0, x < 1
2 ,

1
2 , 1

2 ≤ x < 1,

1, 1 ≤ x,
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thus

f
(−1)
2 (x) =

⎧
⎪⎨
⎪⎩

1 − 3
2x, x < 1

2 ,
1
2 − 1

2x, 1
2 ≤ x < 1,

0, 1 ≤ x

and f2(x) =

{
1 − 2x, 0 ≤ x ≤ 1

4 ,
2
3 (1 − x), 1

4 < x ≤ 1

shown in Figure 8 a), which leads to copula C2 expressed in Figure 8 b).

a) b) c)

Figure 8. a) Distance function, generator (inverse) and b) copula, that

correspond to uniform distribution approximated in m = 2 equally spaced
points. c) Probability mass concentrated on copula support.

To compute measures of dependence (concordance) such as Spearman’s rho
and Kendall’s tau corresponding to singular copula it is generally a challenge, yet
for this simple settings it might be an interesting exercise. Since the copula C2 is
piecewise linear, the whole probability mass is concentrated on its support, thus
to evaluate the expected values (especially in (4)) one need to find out distribu-
tion of the probability. In our case, it is depicted in Figure 8 c). By expressing
variable v in terms of u the double integral reduces to one-dimensional integral,
then

E[UV ] = 2

1/4∫

0

u(1 − 3u)
1
4
1
4

du +

1∫

1/4

u

(
5

4
− u

) 1
2
3
4

du =
2

64
+

11

64
= −13

64

and

E[C(U, V )] = 2

1/4∫

0

max

(
0, u +

1 − 3u − 1

3

) 1
4
1
4

du

+

1∫

1/4

max

(
1

3

(
u +

5

4
− u − 1

2

)
, u +

5

4
− u − 1

)
1
2
3
4

du = 0 +
1

8
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thus ρ2 = 1213
64 −3 = − 9

16 and τ2 = 41
8 −1 = −1

2 , where the subscript 2 conforms
the notation of generator. Although we cannot find explicit form of the original
generator f (that corresponds to uniform distribution U[0,1]) and analytically

calculate ρ, we still can get τ = 1−
∫ 1

0
t
(
(1−t+x ln t)′)2dt = 1−4

∫ 1

0
t ln2 tdt = 0

to measure accuracy of our m = 2 approximation.

5. Conclusion

We have discussed a new construction method for obtaining additive gener-
ators proposed by M c N e i l and N e š l e h o v á [8], the so-called Williamson
n-transform, and illustrated it by some examples. Some of the generators were
shown to not have an explicit form due to non-invertability. Thus a natural ap-
proach to utilize any such parametric family is to approximate it by piecewise
(in 2D case) linear functions with sufficiently dense breakpoints. We showed that
due to the equivalence of convergences of positive distance functions, fixed addi-
tive generators and copulas, we may approximate any n-dimensional Archime-
dean copula by a transformation of convex sum of Dirac functions (though fea-
sible mainly in 2D). We showed some simple examples, including calculation of
correlation coefficients related to a singular copula.
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