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Motivation

The initial impulse came from collaboration with hydrologists...
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Cumulative Distribution Function F(x)

source: Sun et al. 2019: Deriving intensity—duration—frequency (IDF) curves ...
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https://geoscienceletters.springeropen.com/articles/10.1186/s40562-019-0147-x

Motivation

When applying models of probability distribution we face up to:

® numerous classes and construction methods for mathematical
models of joint probability distribution (multivariate
extensions, decomposition to copula and marginals,
nonparametric methods ...)

® PDF and CDF are rarely defined both at once in closed or
computationally convenient form, sometimes just an effective
random generator is available

® software implementations are incomplete, outdated and

scattered across packages / products
® missing application-related functions
® models specialized either to categorical or continuous case
® dimensionality limitations

® demand for unifying approach, simple and fast solution

3/39



Population distribution

£

data

population

® Sometimes we have plenty of observations, thus no parametric
model is needed.

® But usually we need assumptions to create a useful
representation of population.

® Some parametric models are expressed by PDF, some by CDF,
others may be implicit yet easily providing random data.

® One of these three representations of probability distribution
serves as input for the proposed grid-based approach to
modeling and inference.
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Population distribution

To illustrate the matter consider a probability distribution given by

F(fﬂl:%ﬂvs) =

O (07 P01 @) O Py (@2)], @ Py, (w3)])

F - joint (trivariate) cumulative distribution function (CDF),
®p - trivariate CDF of standard normal distribution with

correlation matrix
1 08 0
R=1]108 1 0
0 0 1

®~! - quantile function of univariate standard normal
F' - CDF of univariate distribution D
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Population distribution

Example of specification and generating algorithm in R:

set.seed(1234)
dat <- ¢(0.8, 0, 0) |>
copula: :normalCopula(

dim = 3,
dispstr = "un"
) 1>

copula: :mvdc(

margins = c("norm", "exp",

paramMargins = list(
list(mean = 0, sd = 1),
list(rate = 1),
list(min = 0, max = 1))
) 1>
copula: :rMvdc(n = 100)

"unif n ) s

# random generator seed
# correlation coefficients
# dependence

# dimension

# correlation structure

# joint distribution
# marginals families
# marginals parameters
# normal
# exponential
# uniform

# generate random triplets
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Population distribution

The outcome is 100 random triplets:
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Discretization

data '—» discretization
= equidistant
PDF = quantiles

=
8
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Generated data enter the first stage, where

® values of continuous variables are categorized into bins,
® breaks can be chosen either as
® equidistant (as it is usual in histogram) by number of bins, or
® quantiles corresponding to given probabilities,
® every cell of the grid is characterized by,
® midpoint (center of breaks) and
® size (difference between breaks).
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Discretization
Breaks (grid cells vertices, b) may be set as

® equidistant

max(X;) — min(X,)
b — b(z‘ﬂ)-- = N, , 1=1,...,V;
max(X5) — min(X5) .
by —bg) = N, . d= LN
X3) —min(X
by by = max( 3)N3m1n( 3)7 k=1,..,N,

with by.. = min(X,), by, .. = max(X,), bo. = min(X,), ...
® quantiles for equidistant probabilities

1
1
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Discretization

Midpoints (grid cells centers, ¢) may be
® simple (average)

b.. + b1y
¢, = T (=~
' 2

® probabilistic (local median)

P7"<b(z‘—1).- <Xy <cp)=Pric. <X; <b,.)

Differences (grid cells sizes, d) are defined as

7
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Discretization

breaks_eq_dat <- dat |[>
make_brea_data(bins = c(4, 3, 2)) # equidistant breaks

breaks_pr_dat <- dat |[>

make_brea_data(probs = list( # equidistant probabilities
seq(0, 1, by = 0.25), # 4 bins
seq(0, 1, length.out = 3+1), # 3 bins
seq(0, 1, by = 0.5)) # 2 bins

)

mids_breaks_pr_dat <- make_mid_brea(breaks_pr_dat) # simple midpoints
midp_breaks_pr_dat <- make_mid_brea( # local medians
breaks_pr_dat,
probabilistic = TRUE,
data = dat)

diff_breaks_pr_dat <- lapply(breaks_pr_dat, diff) # differences
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Discretization
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Frequency

data '—- discretization frequencies
= equidistant [ full grid
PDF = quantiles

population

CDF

The second stage starts with

® counting absolute frequency in cells,
® making a one full frequency table in long format.
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Frequency

® Absolute frequency is defined as

Mo =2 D> Lo b1 @0) Lo 16,12 Loy (73)

T, Ty Tg

where 1,(z) =1 if z € J and 0 otherwise.
® Total number of observations will be simply
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Frequency

X, A dy.
X1 X2 X3 val
Cs ny Ny N33 My I d‘3‘ 1 1 1 14
2 1 1 6
Co ny, 5, N3, Ny, i i 1 é
Cy ny My, Ny, Ny ; 3 1 ;
>
b b b b b,
0. 1. 2. 3. 4. X,
notation grid table

frequency_pr_dat <- make_freq_data(dat, breaks = breaks_pr_dat)
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Marginalization

= equidistant

PDF « quantiles

\dai'—b discretization frequencies

full grid |

population

marginalization

The second stage contains some optional steps. One of them is
reduction of full grid (distribution) into a margin.

Marginalization is simply a summation over unwanted variables

make_freq_marg(frequency_pr_dat, ind
make_freq_marg(frequency_pr_dat, ind

1)
c(1,2))
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Marginalization
variable in real scale:

equidistant breaks quartiles
50~
40-
E “E 30.
p=l >
3 8 20-
10-
0- I ' " 1 1 '
-2 -1 0 1 2 3
X1
indexed bins:
equidistant breaks quartiles
50- 50-
40- 40-
_ 30- __ 30~
g g
20~ 20-
10- 10-
0- [l " ' " 0- ' ' " 1
1 2 3 4 1 2 3 4
X X1
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Marginalization

eh

X1
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Conditioning
data '—» discretization frequencies

+ equidistant | full grid |
PDE = quantiles

|conditioning .' marginalization|

population

CDF

Another optional step within frequency stage is getting a
conditional distribution

My

Mijje = N
-]

Ny

make_freq_cond(freq_pr_dat, ced = 1, cing = 2)
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Conditioning
frequency of X1|X2 with equally spaced breaks:

X2:1 X2:2

80-

60 -
T 40-

N .

.. I - -
1 2 3 4 1 2 3 4 i 2 3 4
X1

frequency of X1|X2 with quantiles:

X2:1
60-
40-
g
20-
0- I
1 2 3

X2:2 X2

:8
1 2 3 4 2 3 4
X

' '
4 1
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Application

c

2

k=
S
2
)
=%

data '—» discretization
= equidistant
PDE = quantles

CDF

frequencies
[ full grid |

|conditioning .' marginalization|

—>

application
* PDF

+« CDF

* mean

+ quantile

- level set

Grid of frequency can be used to derive practical quantities related

to joint distribution such as

probability density function (PDF)
cumulative distribution function (CDF)

survival function
mean values

univariate quantiles (quantile function, QF)

CDF level sets

21/39



PDF

One-dimensional via marginalization

b

(i—1)-

Ha = fzdz
n'n
- Zl = fi.
Higher-dimensional
Jiw =3 dlc]lkdk
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PDF

Conditional

f<$1,132,333>

frjga(@1|mg, 3) = fag(zg, x3)

f e = Nije Tk
ilgk = =
.k d,. nd,.
Conditional and marginalized
f o My A
ik = =
n.di.d; nd.d;
o Mg Mk
Jicfw = =

n.pd.. N di“d.j‘
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PDF

frequency_pr_dat |> # frequency full grid
make_freq_marg(1l) [> # marginalized frequency
make_pdf (diffs = diff_breaks_pr_dat["X1"]) # PDF

frequency_pr_dat |> # frequency full grid
make_freq_cond(ced = 1, cing = 2) |[> # conditioned frequency
make_pdf (diffs = diff_breaks_pr_dat) # PDF
marginal for X, conditional for X;|X,
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CDF

Joint CDF
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CDF

Conditional CDF
F1\23(CU1’$27333> = Pr(X; <z]X, < 2y, X3 < z3)

F123(x1|332,:v3):/ f1‘23(7“|x2,x3)d7“

IJk - Z ik
§ E Nysk

k r=1 s=
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CDF

frequency_pr_dat |> # frequency full grid
make_freq marg(ind = 1) |> # marginalized frequency
make_cdf () # CDF
marginal for X conditional for (X, X,)|X;

1.00-

0.75-
S 0.50-
- .
0.00-
i 2 3 4
X1
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Mean

Conditional

oo
E(X,|Xy =24, X5 = 23) = / Tf1\23($1|$2=333)d7“

—00

N, N,

> Nk 1
1|gk_§ Czn._ﬁ§ Ci M|k
i=1 gk i=1

frequency_pr_dat |[> # frequency full grid
make_freq_cond(ced = 1, cing = 2) [> # conditional frequency
# conditional mean

make_mean(mids = midp_breaks_pr_dat)
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Mean

® calculated from median and average midpoints,
® comparison with OLS regression line
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Quantile

Quantile z; of X conditional on values of X,, X5 and
corresponding to probability p

F1\23<$1’332a T3) =p

= F1_|213(p|$2,x3)

frequency_pr_dat |> # frequency full grid
make_freq_cond(ced = 1, cing = 2) [> # conditional frequency
make_quan(prob = c(0.25, 0.5, 0.75)) # conditional quantile
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Quantile

® related to quantile regression
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CDF level set

Pairs of quantiles (z,,x,) conditional on values of X and
corresponding to probability p:

{(ay, ac2)|F12|3(x1, To|73) = p}

frequency_pr_dat |> # frequency full grid
make_freq_marg(ind = 1) |> # conditional frequency
make_cdf () [> # CDF
cut_cdf (prob = c(0.6)) # cut CDF at given probability
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CDF level set

CDF with 0.6 cut

3-

val

X1
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Finer grid

Let n =1-10% and N; = N, = N; = 100.

E(X1]X2) QF(X1]X2) at given probability level

X1
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Finer grid

PDF(X1|X2) at 0.1/0.5/0.9 quantile of X2 CDF with 0.6 cut
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Performance

Timing and memory consumption with 2021 processor and

trivariate problem:

operation N  n (105 time(s) volume (MB)
sample data 100 1 <1 24
10 5 240
100 40 2 400
breaks 100 1 <1 <1
10 15 <1
100 14 <1
200 10 1.6 <1
frequency grid 100 1 1 16
10 4
100 30
200 10 8 128

36/39



Conclusion

® distribution represented by counts in bins
® unifying approach
® independent of model class
® continuous with discrete RV
® scalable in
® number of variables
® precision (grid resolution)
® clear workflow
® modular in
® input - distribution representation
® output - application
® implemented in R using packages from tidyverse system
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Future work
Things to finish, improve or add regarding to

® input: direct support for
® models given by PDF and CDF
® hybrid random vector (classification, clustering)
® nonstandard models (factor copula)
® application:
® survival function (probability of exceedance)
better level-set searching algorithm
easy replacement of indices by real values
refine with kernel smoothing on demand
® deployment:
® available as package and in public
® documentation
® optimization:
® check for different data manipulation back-end (data.table)
® parallelization wherever it makes sense (like in make_freq)
® grid reduction to regions of interest (to save memory,
especially in higher dimensions)
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Thank you

and feel free to recall this presentation on

www.math.sk/bacigal
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