
Grid-based computing
over joint probability distribution

FSTA 2024

Tomáš Bacigál

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering

Slovak University of Technology in Bratislava
Slovakia

https://www.math.sk/bacigal

2024-02-01

1 / 39

https://www.math.sk/bacigal

Motivation
The initial impulse came from collaboration with hydrologists…

source: Sun et al. 2019: Deriving intensity–duration–frequency (IDF) curves …

2 / 39

https://geoscienceletters.springeropen.com/articles/10.1186/s40562-019-0147-x

Motivation

When applying models of probability distribution we face up to:
• numerous classes and construction methods for mathematical

models of joint probability distribution (multivariate
extensions, decomposition to copula and marginals,
nonparametric methods …)

• PDF and CDF are rarely defined both at once in closed or
computationally convenient form, sometimes just an effective
random generator is available

• software implementations are incomplete, outdated and
scattered across packages / products

• missing application-related functions
• models specialized either to categorical or continuous case
• dimensionality limitations

• demand for unifying approach, simple and fast solution

3 / 39

Population distribution

• Sometimes we have plenty of observations, thus no parametric
model is needed.

• But usually we need assumptions to create a useful
representation of population.

• Some parametric models are expressed by PDF, some by CDF,
others may be implicit yet easily providing random data.

• One of these three representations of probability distribution
serves as input for the proposed grid-based approach to
modeling and inference.

4 / 39

Population distribution
To illustrate the matter consider a probability distribution given by

𝐹(𝑥1, 𝑥2, 𝑥3) =
ΦR(Φ−1[𝐹𝑁(0,1)(𝑥1)], Φ−1[𝐹𝐸𝑥𝑝(1)(𝑥2)], Φ−1[𝐹𝑈(0,1)(𝑥3)])

• 𝐹 - joint (trivariate) cumulative distribution function (CDF),
• ΦR - trivariate CDF of standard normal distribution with

correlation matrix

R = ⎛⎜
⎝

1 0.8 0
0.8 1 0
0 0 1

⎞⎟
⎠

• Φ−1 - quantile function of univariate standard normal
• 𝐹𝐷 - CDF of univariate distribution 𝐷

5 / 39

Population distribution

Example of specification and generating algorithm in R:

set.seed(1234) # random generator seed
dat <- c(0.8, 0, 0) |> # correlation coefficients

copula::normalCopula(# dependence
dim = 3, # dimension
dispstr = "un" # correlation structure
) |>

copula::mvdc(# joint distribution
margins = c("norm", "exp", "unif"), # marginals families
paramMargins = list(# marginals parameters

list(mean = 0, sd = 1), # normal
list(rate = 1), # exponential
list(min = 0, max = 1)) # uniform

) |>
copula::rMvdc(n = 100) # generate random triplets

6 / 39

Population distribution

The outcome is 100 random triplets:

7 / 39

Discretization

Generated data enter the first stage, where
• values of continuous variables are categorized into bins,
• breaks can be chosen either as

• equidistant (as it is usual in histogram) by number of bins, or
• quantiles corresponding to given probabilities,

• every cell of the grid is characterized by,
• midpoint (center of breaks) and
• size (difference between breaks).

8 / 39

Discretization
Breaks (grid cells vertices, 𝑏) may be set as

• equidistant

𝑏𝑖⋅⋅ − 𝑏(𝑖−1)⋅⋅ = max(𝑋1) − min(𝑋1)
𝑁1

, 𝑖 = 1, … , 𝑁1

𝑏⋅𝑗⋅ − 𝑏⋅(𝑗−1)⋅ = max(𝑋2) − min(𝑋2)
𝑁2

, 𝑗 = 1, … , 𝑁2

𝑏⋅⋅𝑘 − 𝑏⋅⋅(𝑘−1) = max(𝑋3) − min(𝑋3)
𝑁3

, 𝑘 = 1, … , 𝑁3

with 𝑏0⋅⋅ = min(𝑋1), 𝑏𝑁1⋅⋅ = max(𝑋1), 𝑏⋅0⋅ = min(𝑋2), …
• quantiles for equidistant probabilities

𝑃𝑟(𝑏(𝑖−1)⋅⋅ < 𝑋1 ≤ 𝑏𝑖⋅⋅) = 1
𝑁1

, 𝑖 = 1, … , 𝑁1

⋯
9 / 39

Discretization

Midpoints (grid cells centers, 𝑐) may be
• simple (average)

𝑐𝑖⋅⋅ =
𝑏𝑖⋅⋅ + 𝑏(𝑖−1)⋅⋅

2
• probabilistic (local median)

𝑃𝑟(𝑏(𝑖−1)⋅⋅ < 𝑋1 ≤ 𝑐𝑖⋅⋅) = 𝑃𝑟(𝑐𝑖⋅⋅ < 𝑋1 ≤ 𝑏𝑖⋅⋅)

Differences (grid cells sizes, 𝑑) are defined as

𝑑𝑖⋅⋅ = 𝑏𝑖⋅⋅ − 𝑏(𝑖−1)⋅⋅

10 / 39

Discretization

breaks_eq_dat <- dat |>
make_brea_data(bins = c(4, 3, 2)) # equidistant breaks

breaks_pr_dat <- dat |>
make_brea_data(probs = list(# equidistant probabilities

seq(0, 1, by = 0.25), # 4 bins
seq(0, 1, length.out = 3+1), # 3 bins
seq(0, 1, by = 0.5)) # 2 bins

)

mids_breaks_pr_dat <- make_mid_brea(breaks_pr_dat) # simple midpoints
midp_breaks_pr_dat <- make_mid_brea(# local medians

breaks_pr_dat,
probabilistic = TRUE,
data = dat)

diff_breaks_pr_dat <- lapply(breaks_pr_dat, diff) # differences

11 / 39

Discretization

12 / 39

Frequency

The second stage starts with
• counting absolute frequency in cells,
• making a one full frequency table in long format.

13 / 39

Frequency

• Absolute frequency is defined as

𝑛𝑖𝑗𝑘 = ∑
𝑥1

∑
𝑥2

∑
𝑥3

1(𝑏(𝑖−1)⋅⋅,𝑏𝑖⋅⋅](𝑥1) 1(𝑏⋅(𝑗−1)⋅,𝑏⋅𝑗⋅](𝑥2) 1(𝑏⋅⋅(𝑘−1),𝑏⋅⋅𝑘](𝑥3)

where 1ℐ(𝑥) = 1 if 𝑥 ∈ ℐ and 0 otherwise.
• Total number of observations will be simply

𝑛 =
𝑁1

∑
𝑖=1

𝑁2

∑
𝑗=1

𝑁3

∑
𝑘=1

𝑛𝑖𝑗𝑘

14 / 39

Frequency

notation

X1 X2 X3 val
1 1 1 14
2 1 1 6
3 1 1 1
4 1 1 0
1 2 1 1
2 2 1 5
. . . .

grid table

frequency_pr_dat <- make_freq_data(dat, breaks = breaks_pr_dat)

15 / 39

Marginalization

The second stage contains some optional steps. One of them is
reduction of full grid (distribution) into a margin.

Marginalization is simply a summation over unwanted variables

𝑛𝑖⋅⋅ =
𝑁2

∑
𝑗=1

𝑁3

∑
𝑘=1

𝑛𝑖𝑗𝑘

𝑛𝑖𝑗⋅ =
𝑁3

∑
𝑘=1

𝑛𝑖𝑗𝑘

make_freq_marg(frequency_pr_dat, ind = 1)
make_freq_marg(frequency_pr_dat, ind = c(1,2))

16 / 39

Marginalization
variable in real scale:

indexed bins:

17 / 39

Marginalization

18 / 39

Conditioning

Another optional step within frequency stage is getting a
conditional distribution

𝑛𝑖|𝑗𝑘 = 𝑛𝑛𝑖𝑗𝑘
𝑛⋅𝑗𝑘

𝑛𝑖𝑗|𝑘 = 𝑛𝑛𝑖𝑗𝑘
𝑛⋅⋅𝑘

make_freq_cond(freq_pr_dat, ced = 1, cing = 2)

19 / 39

Conditioning
frequency of 𝑋1|𝑋2 with equally spaced breaks:

frequency of 𝑋1|𝑋2 with quantiles:

20 / 39

Application

Grid of frequency can be used to derive practical quantities related
to joint distribution such as

• probability density function (PDF)
• cumulative distribution function (CDF)
• survival function
• mean values
• univariate quantiles (quantile function, QF)
• CDF level sets

21 / 39

PDF

One-dimensional via marginalization

𝑃𝑟(𝑏(𝑖−1)⋅⋅ < 𝑋1 ≤ 𝑏𝑖⋅⋅) = ∫
𝑏𝑖⋅⋅

𝑏(𝑖−1)⋅⋅

∫
∞

−∞
∫

∞

−∞
𝑓(𝑥1, 𝑥2, 𝑥3)𝑑𝑥1𝑑𝑥2𝑑𝑥3

𝑛𝑖⋅⋅
𝑛 = 𝑓𝑖⋅⋅𝑑𝑖⋅⋅

𝑛𝑖⋅⋅
𝑛 𝑑𝑖⋅⋅

= 𝑓𝑖⋅⋅

Higher-dimensional
𝑓𝑖𝑗𝑘 = 𝑛𝑖𝑗𝑘

𝑛 𝑑𝑖𝑑𝑗𝑑𝑘

22 / 39

PDF

Conditional

𝑓1|23(𝑥1|𝑥2, 𝑥3) = 𝑓(𝑥1, 𝑥2, 𝑥3)
𝑓23(𝑥2, 𝑥3)

𝑓𝑖⋅⋅|⋅𝑗𝑘 = 𝑛𝑖𝑗𝑘
𝑛⋅𝑗𝑘 𝑑𝑖⋅⋅

=
𝑛𝑖⋅⋅|⋅𝑗𝑘
𝑛 𝑑𝑖⋅⋅

Conditional and marginalized

𝑓𝑖𝑗⋅|⋅⋅𝑘 = 𝑛𝑖𝑗𝑘
𝑛⋅⋅𝑘 𝑑𝑖⋅⋅𝑑⋅𝑗⋅

=
𝑛𝑖𝑗⋅|⋅⋅𝑘

𝑛 𝑑𝑖⋅⋅𝑑⋅𝑗⋅

𝑓𝑖⋅⋅|⋅⋅𝑘 = 𝑛𝑖⋅𝑘
𝑛⋅⋅𝑘 𝑑𝑖⋅⋅

=
𝑛𝑖⋅⋅|⋅⋅𝑘

𝑛 𝑑𝑖⋅⋅𝑑⋅𝑗⋅

23 / 39

PDF
frequency_pr_dat |> # frequency full grid

make_freq_marg(1) |> # marginalized frequency
make_pdf(diffs = diff_breaks_pr_dat["X1"]) # PDF

frequency_pr_dat |> # frequency full grid
make_freq_cond(ced = 1, cing = 2) |> # conditioned frequency
make_pdf(diffs = diff_breaks_pr_dat) # PDF

marginal for 𝑋1 conditional for 𝑋1|𝑋2

24 / 39

CDF

Joint CDF

𝐹(𝑥1, 𝑥2, 𝑥3) = ∫
𝑥1

−∞
∫

𝑥2

−∞
∫

𝑥3

−∞
𝑓(𝑟, 𝑠, 𝑡) 𝑑𝑟 𝑑𝑠 𝑑𝑡

𝐹𝑖𝑗𝑘 =
𝑖

∑
𝑟=1

𝑗
∑
𝑠=1

𝑘
∑
𝑡=1

𝑓𝑟𝑠𝑡 𝑑𝑟⋅⋅𝑑⋅𝑠⋅𝑑⋅⋅𝑡

𝐹𝑖𝑗𝑘 = 1
𝑛

𝑖
∑
𝑟=1

𝑗
∑
𝑠=1

𝑘
∑
𝑡=1

𝑛𝑟𝑠𝑡

25 / 39

CDF

Conditional CDF

𝐹1|23(𝑥1|𝑥2, 𝑥3) ≡ 𝑃𝑟(𝑋1 ≤ 𝑥1|𝑋2 ≤ 𝑥2, 𝑋3 ≤ 𝑥3)

𝐹1|23(𝑥1|𝑥2, 𝑥3) = ∫
𝑥1

−∞
𝑓1|23(𝑟|𝑥2, 𝑥3) 𝑑𝑟

𝐹𝑖⋅⋅|⋅𝑗𝑘 = 1
𝑛⋅𝑗𝑘

𝑖
∑
𝑟=1

𝑛𝑟𝑗𝑘

𝐹𝑖𝑗⋅|⋅⋅𝑘 = 1
𝑛⋅⋅𝑘

𝑖
∑
𝑟=1

𝑗
∑
𝑠=1

𝑛𝑟𝑠𝑘

26 / 39

CDF
frequency_pr_dat |> # frequency full grid

make_freq_marg(ind = 1) |> # marginalized frequency
make_cdf() # CDF

marginal for 𝑋1 conditional for (𝑋1, 𝑋2)|𝑋3

27 / 39

Mean

Conditional

𝐸(𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3) = ∫
∞

−∞
𝑟 𝑓1|23(𝑥1|𝑥2, 𝑥3) 𝑑𝑟

𝐸1|⋅𝑗𝑘 =
𝑁1

∑
𝑖=1

𝑐𝑖⋅⋅
𝑛𝑖𝑗𝑘
𝑛⋅𝑗𝑘

= 1
𝑛

𝑁1

∑
𝑖=1

𝑐𝑖⋅⋅ 𝑛𝑖⋅⋅|⋅𝑗𝑘

frequency_pr_dat |> # frequency full grid
make_freq_cond(ced = 1, cing = 2) |> # conditional frequency
make_mean(mids = midp_breaks_pr_dat) # conditional mean

28 / 39

Mean
• calculated from median and average midpoints,
• comparison with OLS regression line

29 / 39

Quantile

Quantile 𝑥1 of 𝑋1 conditional on values of 𝑋2, 𝑋3 and
corresponding to probability 𝑝

𝐹1|23(𝑥1|𝑥2, 𝑥3) = 𝑝
𝑥1 = 𝐹 −1

1|23(𝑝|𝑥2, 𝑥3)

frequency_pr_dat |> # frequency full grid
make_freq_cond(ced = 1, cing = 2) |> # conditional frequency
make_quan(prob = c(0.25, 0.5, 0.75)) # conditional quantile

30 / 39

Quantile
• related to quantile regression

31 / 39

CDF level set

Pairs of quantiles (𝑥1, 𝑥2) conditional on values of 𝑋3 and
corresponding to probability 𝑝:

{(𝑥1, 𝑥2)|𝐹12|3(𝑥1, 𝑥2|𝑥3) = 𝑝}

frequency_pr_dat |> # frequency full grid
make_freq_marg(ind = 1) |> # conditional frequency
make_cdf() |> # CDF
cut_cdf(prob = c(0.6)) # cut CDF at given probability

32 / 39

CDF level set

33 / 39

Finer grid

Let 𝑛 = 1 ⋅ 106 and 𝑁1 = 𝑁2 = 𝑁3 = 100.

34 / 39

Finer grid

35 / 39

Performance
Timing and memory consumption with 2021 processor and
trivariate problem:

operation 𝑁 𝑛 (106) time (s) volume (MB)
sample data 100 1 < 1 24

10 5 240
100 40 2 400

breaks 100 1 < 1 < 1
10 1.5 < 1
100 14 < 1

200 10 1.6 < 1
frequency grid 100 1 1 16

10 4
100 30

200 10 8 128

36 / 39

Conclusion

• distribution represented by counts in bins
• unifying approach

• independent of model class
• continuous with discrete RV

• scalable in
• number of variables
• precision (grid resolution)

• clear workflow
• modular in

• input - distribution representation
• output - application

• implemented in R using packages from tidyverse system

37 / 39

Future work
Things to finish, improve or add regarding to

• input: direct support for
• models given by PDF and CDF
• hybrid random vector (classification, clustering)
• nonstandard models (factor copula)

• application:
• survival function (probability of exceedance)
• better level-set searching algorithm
• easy replacement of indices by real values
• refine with kernel smoothing on demand

• deployment:
• available as package and in public
• documentation

• optimization:
• check for different data manipulation back-end (data.table)
• parallelization wherever it makes sense (like in make_freq)
• grid reduction to regions of interest (to save memory,

especially in higher dimensions)
38 / 39

Thank you

and feel free to recall this presentation on

www.math.sk/bacigal

39 / 39

https://www.math.sk/bacigal

